Browse > Article
http://dx.doi.org/10.12989/sem.2022.82.5.679

Water carrying iron (iii) oxide (Fe3O4) ferrofluid flow and heat transfer due to deceleration of a rotating plate  

Bhandari, Anupam (Department of Mathematics, School of Engineering, University of Petroleum & Energy Studies (UPES))
Publication Information
Structural Engineering and Mechanics / v.82, no.5, 2022 , pp. 679-690 More about this Journal
Abstract
This research effort examines the flow behavior and heat transfer assessment of water carrying iron (iii) oxide magnetic fluid due to a rotating and moving plane lamina under the influence of magnetic dipole. The effect of rotational viscosity and magnetic body force is taken into consideration in the present study. The involvement of the moving disk makes a significant contribution to the velocity distribution and heat transfer in rotational flow. Vertical movement of the disk keeps the flow unsteady and the similarity transformation converts the governing equation of unsteady flow into nonlinear coupled differential equations. The non-dimensional equation in the present system is solved through the finite element procedure. Optimizing the use of physical parameters described in this flow, such results can be useful in the rotating machinery industries for heat transfer enhancement.
Keywords
ferrofluid; heat transfer; magnetic field; rotating and moving disk;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Alsabery, A.I., Ismael, M.A., Chamkha, A.J. and Hashim, I. (2020), "Effect of nonhomogeneous nanofluid model on transient natural convection in a non-Darcy porous cavity containing an inner solid body", Int. Commun. Heat Mass Transf., 110, 104442. https://doi.org/10.1016/j.icheatmasstransfer.2019.104442.   DOI
2 Ariel, P.D. (2002), "On computation of MHD flow near a rotating disk", ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 82(4), 235-246. https://doi.org/10.1002/1521-4001(200204)82:4<235::AID-ZAMM235>3.0.CO;2-L.   DOI
3 Ariel, P.D. (2003), "On the flow of an elastico-viscous fluid near a rotating disk", J. Comput. Appl. Math., 154(1), 1-25. https://doi.org/10.1016/S0377-0427(02)00744-6.   DOI
4 Attia, H.A. (1998), "Unsteady MHD flow near a rotating porous disk with uniform suction or injection", Fluid Dyn. Res., 23(5), 283-290. https://doi.org/10.1016/S0169-5983(98)80011-7.   DOI
5 Bhandari, A. (2020b), "Study of ferrofluid flow in a rotating system through mathematical modeling", Math. Comput. Simul., 178, 290-306. https://doi.org/10.1016/j.matcom.2020.06.018.   DOI
6 Bhandari, A. (2020a), "Study of magnetoviscous effects on ferrofluid flow", Eur. Phys. J. Plus, 135(7), 1-14. https://doi.org/10.1140/epjp/s13360-020-00563-w.   DOI
7 Attia, H.A. and Aboul-Hassan, A.L. (2001), "Effect of hall current on the unsteady MHD flow due to a rotating disk with uniform suction or injection", Appl. Math. Model., 25(12), 1089-1098. https://doi.org/10.1016/S0307-904X(01)00033-6.   DOI
8 Bachok, N., Ishak, A. and Pop, I. (2011a), "Flow and heat transfer over a rotating porous disk in a nanofluid", Physica B: Phys. Condens. Matter., 406(9), 1767-1772. https://doi.org/10.1016/j.physb.2011.02.024.   DOI
9 Bacri, J.C., Perzynski, R., Shliomis, M.I. and Burde, G.I. (1995), "Negative-viscosity effect in a magnetic fluid", Phys. Rev. Lett., 75(11), 2128-2131. https://doi.org/10.1103/PhysRevLett.75.2128.   DOI
10 Benton, E.R. (1966), "On the flow due to a rotating disk", J. Fluid Mech., 24(4), 781-800. https://doi.org/10.1017/S0022112066001009.   DOI
11 Turkyilmazoglu, M. (2014), "Nanofluid flow and heat transfer due to a rotating disk", Comput. Fluid., 94, 139-146. https://doi.org/10.1016/j.compfluid.2014.02.009.   DOI
12 Modather, M., Rashad, A.M. and Chamkha, A.J. (2009), "An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium", Turk. J. Eng. Environ. Sci., 33(4), 245-257. https://doi.org/10.3906/muh-0906-31.   DOI
13 Mustafa, M. (2017), "MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model", Int. J. Heat Mass Transf., 108, 1910-1916. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.064.   DOI
14 Selimefendigil, F., Ismael, M.A. and Chamkha, A.J. (2017), "Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder", Int. J. Mech. Sci., 124-125, 95-108. https://doi.org/10.1016/j.ijmecsci.2017.03.007.   DOI
15 Blums, E., TSebers, A.O., Cebers, A.O. and Maiorov, M.M. (1997), Magnetic Fluids, Walter de Gruyter.
16 Khodabandeh, E., Toghraie, D., Chamkha, A., Mashayekhi, R., Akbari, O. and Rozati, S.A. (2019), "Energy saving with using of elliptic pillows in turbulent flow of two-phase water-silver nanofluid in a spiral heat exchanger", Int. J. Numer. Meth. Heat Fluid Flow, 30(4), 2025-2049. https://doi.org/10.1108/HFF-10-2018-0594.   DOI
17 Mehryan, S.A.M., Ghalambaz, M., Chamkha, A.J. and Izadi, M. (2020), "Numerical study on natural convection of Ag-MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model", Powder Technol., 367, 443-455. https://doi.org/10.1016/j.powtec.2020.04.005.   DOI
18 Ram, P. and Bhandari, A. (2013), "Negative viscosity effects on ferrofluid flow due to a rotating disk", Int. J. Appl. Electromagnet. Mech., 41(4), 467-478. https://doi.org/10.3233/JAE-121637.   DOI
19 Neuringer, J.L. (1966), "Some viscous flows of a saturated ferro-fluid under the combined influence of thermal and magnetic field gradients", Int. J. Nonlin. Mech., 1(2), 123-137. https://doi.org/10.1016/0020-7462(66)90025-4.   DOI
20 Muller, O., Hahn, D. and Liu, M. (2006), "Non-Newtonian behaviour in ferrofluids and magnetization relaxation", J. Phys. Conden. Matt., 18, S2623-S2632. https://doi.org/10.1088/0953-8984/18/38/S06.   DOI
21 Rosensweig, R.E. (1997), Ferrohydrodynamics, Courier Corporation.
22 Ram, P. and Bhandari, A. (2013), "Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk", Result. Phys., 3, 55-60. https://doi.org/10.1016/j.rinp.2013.03.002.   DOI
23 Rashidi, M.M., Abelman, S. amd Mehr, N.F. (2013), "Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid", Int. J. Heat Mass Transf., 62, 515-525. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004.   DOI
24 Rasool, G., Zhang, T., Chamkha, A.J., Shafiq, A., Tlili, I. and Shahzadi, G. (2020), "Entropy generation and consequences of binary chemical reaction on mhd darcy-forchheimer williamson nanofluid flow over non-linearly stretching surface", Entropy, 22(1), 18. https://doi.org/10.3390/e22010018.   DOI
25 Selimefendigil, F. and Chamkha, A.J. (2019), "MHD mixed convection of nanofluid in a three-dimensional vented cavity with surface corrugation and inner rotating cylinder", Int. J. Numer. Meth. Heat Fluid Flow, 30(4), 1637-1660. https://doi.org/10.1108/HFF-10-2018-0566.   DOI
26 Selimefendigil, F., Oztop, H.F. and Chamkha, A.J. (2019), "Role of magnetic field on forced convection of nanofluid in a branching channel", Int. J. Numer. Meth. Heat Fluid Flow, 30(4), 1755-1772. https://doi.org/10.1108/HFF-10-2018-0568.   DOI
27 Qayyum, S., Ijaz Khan, M., Hayat, T., Alsaedi, A. and Tamoor, M. (2018), "Entropy generation in dissipative flow of Williamson fluid between two rotating disks", Int. J. Heat Mass Transf., 127, 933-942. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.034.   DOI
28 Sibanda, P. and Makinde, O.D. (2010), "On steady MHD flow and heat transfer past a rotating disk in a porous medium with ohmic heating and viscous dissipation", Int. J. Numer. Meth. Heat Fluid Flow, 20(3), 269-285. https://doi.org/10.1108/09615531011024039.   DOI
29 Attia, H.A. (2007), "Rotating disk flow and heat transfer of a conducting non-newtonian fluid with suction-injection and ohmic heating", J. Brazil. Soc. Mech. Sci. Eng., 29(2), 168-173. https://doi.org/10.1590/S1678-58782007000200006.   DOI
30 Shliomis, M.I. and Morozov, K.I. (1994), "Negative viscosity of ferrofluid under alternating magnetic field", Phys. Fluid., 6(8), 2855-2861. https://doi.org/10.1063/1.868108.   DOI
31 Siddiqui, A.A. and Turkyilmazoglu, M. (2019), "A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids", Micromach., 10(6), 373. https://doi.org/10.3390/mi10060373.   DOI
32 Takhar, H.S., Chamkha, A.J. and Nath, G. (2002), "MHD flow over a moving plate in a rotating fluid with magnetic field, hall currents and free stream velocity", Int. J. Eng. Sci., 40(13), 1511-1527. https://doi.org/10.1016/S0020-7225(02)00016-2.   DOI
33 Tayebi, T. and Chamkha, A.J. (2019), "Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block", Int. J. Numer. Meth. Heat Fluid Flow, 30(3), 1115-1136. https://doi.org/10.1108/HFF-04-2019-0350.   DOI
34 Turkyilmazoglu, M. (2018), "Fluid flow and heat transfer over a rotating and vertically moving disk", Phys. Fluid., 30(6), 063605. https://doi.org/10.1063/1.5037460.   DOI
35 Veera Krishna, M. and Chamkha, A.J. (2019), "Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium", Result. Phys., 15, 102652. https://doi.org/10.1016/j.rinp.2019.102652.   DOI
36 Sheikholeslami, M. and Shehzad, S A. (2018), "Numerical analysis of Fe3O4-H2O nanofluid flow in permeable media under the effect of external magnetic source", Int. J. Numer. Meth. Heat Fluid Flow, 118, 182-192. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.113.   DOI
37 Ahmed, J., Khan, M. and Ahmad, L. (2019), "Impact of nanoparticles and radiative heat flux in von Karman swirling flow of Maxwell fluid", Chin. J. Phys., 62, 86-98. https://doi.org/10.1016/j.cjph.2019.09.030.   DOI
38 Attia, H.A. (2007), "On the effectivness of ion slip and and uniform suction or injection on steady MHD flow due to rotating disk with heat transfer ohmic heating", Chem. Eng. Commun. 194(10), 1396-1407. https://doi.org/10.1080/00986440701401545.   DOI
39 Bhandari, A. and Kumar, V. (2015), "Effect of magnetization force on ferrofluid flow due to a rotating disk in the presence of an external magnetic field", Eur. Phys. J. Plus, 130(4), 1-12. https://doi.org/10.1140/epjp/i2015-15062-0.   DOI
40 Abbas, Z. and Hasnain, J. (2017), "Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus", Result. Phys., 7, 574-580. https://doi.org/10.1016/j.rinp.2016.12.022.   DOI
41 Hosseinzadeh, K., Asadi, A., Mogharrebi, A.R., Khalesi, J., Mousavisani, S. and Ganji, D.D. (2019), "Entropy generation analysis of (CH2OH)2 containing CNTs nanofluid flow under effect of MHD and thermal radiation", Case Stud. Therm. Eng., 14, 100482. https://doi.org/10.1016/j.csite.2019.100482.   DOI
42 Hayat, T., Rashid, M., Imtiaz, M. and Alsaedi, A. (2015), "Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip", AIP Adv., 5(6), 067169. https://doi.org/10.1063/1.4923380.   DOI
43 Hayat, T., Rashid, M., Imtiaz, M. and Alsaedi, A. (2017), "Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions", Int. J. Heat Mass Transf., 113, 96-105. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.018.   DOI
44 Khan, J.A., Mustafa, M., Hayat, T., Turkyilmazoglu, M. and Alsaedi, A. (2017), "Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno's model", Int. J. Numer. Meth. Heat Fluid Flow, 27(1), 221-234. https://doi.org/10.1108/HFF-08-2015-0328.   DOI
45 Esmaeili, H.A., Khaki, M., Abbasi, M., Esmaeili, H.A., Khaki, M. and Abbasi, M. (2018a), "Structural Engineering and Mechanics", Struct. Eng. Mech., 67(1), 21. https://doi.org/10.12989/sem.2018.67.1.021.   DOI
46 Chamkha, A.J., Issa, C. and Khanafer, K. (2002), "Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation", Int. J. Therm. Sci., 41(1), 73-81. https://doi.org/10.1016/S1290-0729(01)01305-9.   DOI
47 Cochran, W.G. (1934), "The flow due to a rotating disc", Math. Proc. Cambridge Philos. Soc., 30(3), 365-375. https://doi.org/10.1017/S0305004100012561.   DOI
48 Dogonchi, A.S., Ismael, M.A., Chamkha, A.J. and Ganji, D.D. (2019), "Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall", J. Therm. Anal. Calorim., 135(6), 3485-3497. https://doi.org/10.1007/s10973-018-7520-4.   DOI
49 Esmaeili, H.A., Khaki, M., Abbasi, M., Esmaeili, H.A., Khaki, M. and Abbasi, M. (2018b), "Structural Engineering and Mechanics", Struct. Eng. Mech., 68(3), 359. https://doi.org/10.12989/sem.2018.68.3.359.   DOI
50 Ghalambaz, M., Doostani, A., Izadpanahi, E. and Chamkha, A.J. (2020), "Conjugate natural convection flow of Ag-MgO/water hybrid nanofluid in a square cavity", J. Therm. Anal. Calorim., 139(3), 2321-2336. https://doi.org/10.1007/s10973-019-08617-7.   DOI
51 Hafeez, A., Khan, M., Ahmed, A. and Ahmed, J. (2020), "Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory", Appl. Math. Mech., 41(7), 1083-1094. https://doi.org/10.1007/s10483-020-2629-9.   DOI
52 Haq, R.U., Nadeem, S., Khan, Z.H. and Okedayo, T.G. (2014), "Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet", Cent Eur. J. Phys., 12(12), 862-871. https://doi.org/10.2478/s11534-014-0522-3.   DOI