• 제목/요약/키워드: Unscented 칼만 필터

검색결과 40건 처리시간 0.026초

UKF 기반 2-자유도 진자 시스템의 파라미터 추정 (Parameter Estimation of 2-DOF System Based on Unscented Kalman Filter)

  • 승지훈;김태영;아티야 아미어;팔로스 알렉산더;정길도
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1128-1136
    • /
    • 2012
  • In this paper, the states and parameters in a dynamic system are estimated by applying an Unscented Kalman Filter (UKF). The UKF is widely used in various fields such as sensor fusion, trajectory estimation, and learning of Neural Network weights. These estimations are necessary and important in determining the stability of a mobile system, monitoring, and predictions. However, conventional approaches are difficult to estimate based on the experimental data, due to properties of non-linearity and measurement noises. Therefore, in this paper, UKF is applied in estimating the states and parameters needed. An experimental dynamic system has been set up for obtaining data and the experimental data is collected for parameter estimation. The measurement noises are primarily reduced by applying the Low Pass Filter (LPF). Given the simulation results, the estimated error rate is 39 percent more efficient than the results obtained using the Least Square Method (LSM). Secondly, the estimated parameters have an average convergence period of four seconds.

적응형 Unscented 칼만필터를 이용한 플러디드 납축전지의 SOC 추정 (SOC Estimation of Flooded Lead Acid Battery Using an Adaptive Unscented Kalman Filter)

  • 압둘바싯칸;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 추계학술대회 논문집
    • /
    • pp.59-60
    • /
    • 2016
  • Flooded lead acid batteries are still very popular in the industry because of their low cost as compared to their counterparts. State of Charge (SOC) estimation is of great importance for a flooded lead acid battery to ensure its safe working and to prevent it from over-charging or over-discharging. Different types of Kalman Filters are widely used for SOC estimation of batteries. The values of process and measurement noise covariance of a filter are usually calculated by trial and error method and taken as constant throughout the estimation process. While in practical cases, these values can vary as well depending upon the dynamics of the system. Therefore an Adaptive Unscented Kalman Filter (AUKF) is introduced in which the values of the process and measurement noise covariance are updated in each iteration based on the residual system error. A comparison of traditional and Adaptive Unscented Kalman Filter is presented in the paper. The results show that SOC estimation error by the proposed method is further reduced by 3 % as compared to traditional Unscented Kalman Filter.

  • PDF

불확정 표적 모델에 대한 순환 신경망 기반 칼만 필터 설계 (Application of Recurrent Neural-Network based Kalman Filter for Uncertain Target Models)

  • 김동범;정대교;임재혁;민사원;문준
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.10-21
    • /
    • 2023
  • For various target tracking applications, it is well known that the Kalman filter is the optimal estimator(in the minimum mean-square sense) to predict and estimate the state(position and/or velocity) of linear dynamical systems driven by Gaussian stochastic noise. In the case of nonlinear systems, Extended Kalman filter(EKF) and/or Unscented Kalman filter(UKF) are widely used, which can be viewed as approximations of the(linear) Kalman filter in the sense of the conditional expectation. However, to implement EKF and UKF, the exact dynamical model information and the statistical information of noise are still required. In this paper, we propose the recurrent neural-network based Kalman filter, where its Kalman gain is obtained via the proposed GRU-LSTM based neural-network framework that does not need the precise model information as well as the noise covariance information. By the proposed neural-network based Kalman filter, the state estimation performance is enhanced in terms of the tracking error, which is verified through various linear and nonlinear tracking problems with incomplete model and statistical covariance information.

UKF를 사용한 AHRS의 자기장 측정 편차 추정 (Bias Estimation of Magnetic Field Measurement by AHRS Using UKF)

  • 고낙용;송경섭;정석기;이종무;최현택;문용선
    • 한국해양공학회지
    • /
    • 제31권2호
    • /
    • pp.177-182
    • /
    • 2017
  • This paper describes an unscented Kalman filter approach to estimate the bias in magnetic field measurements. A microelectromechanical systems attitude heading reference system (MEMS AHRS) was used to measure the magnetic field, together with the acceleration and angular rate. A magnetic field is usually used for yaw detection, while the acceleration serves to detect the roll and pitch. Magnetic field measurements are vulnerable to distortion due to hard-iron effect and soft-iron effect. The bias in the measurement accounts for the hard-iron effect, and this paper focuses on an approach to estimate this bias. The proposed method is compared with other methods through experiments that implement the navigation of an underwater robot using an AHRS and Doppler velocity log. The results verify that the compensation of the bias by the proposed method improves the navigation performance more than or comparable to the compensation by other methods.

칼만필터로 훈련되는 순환신경망을 이용한 시변채널 등화 (Equalization of Time-Varying Channels using a Recurrent Neural Network Trained with Kalman Filters)

  • 최종수;권오신
    • 제어로봇시스템학회논문지
    • /
    • 제9권11호
    • /
    • pp.917-924
    • /
    • 2003
  • Recurrent neural networks have been successfully applied to communications channel equalization. Major disadvantages of gradient-based learning algorithms commonly employed to train recurrent neural networks are slow convergence rates and long training sequences required for satisfactory performance. In a high-speed communications system, fast convergence speed and short training symbols are essential. We propose decision feedback equalizers using a recurrent neural network trained with Kalman filtering algorithms. The main features of the proposed recurrent neural equalizers, utilizing extended Kalman filter (EKF) and unscented Kalman filter (UKF), are fast convergence rates and good performance using relatively short training symbols. Experimental results for two time-varying channels are presented to evaluate the performance of the proposed approaches over a conventional recurrent neural equalizer.

언센티드 칼만필터 훈련 알고리즘에 의한 순환신경망의 파라미터 추정 및 비선형 채널 등화에의 응용 (Parameter Estimation of Recurrent Neural Networks Using A Unscented Kalman Filter Training Algorithm and Its Applications to Nonlinear Channel Equalization)

  • 권오신
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.552-559
    • /
    • 2005
  • 실시간 순환형 훈련 알고리즘(RTRL)과 같이 경사법에 의해 훈련되는 순환형 뉴럴 네트웍(RNN)은 수렴속도가 매우 느린 단점을 지니고 있다. 이 알고리즘은 또한 오차 역전달 처리과정에서 결코 쉽지 않은 미분 계산을 필요로 한다. 본 논문에서는 완전하게 결합된 RNN의 훈련을 위하여 소위 언센티드 칼만필터라고 불리우는 미분없는 칼만필터 훈련 알고리즘을 시스템의 상태공간 상에서 표현하였다. 미분없는 칼만필터 훈련 알고리즘은 순환형 뉴럴 네트웍 훈련시 미분 계산 없이 매우 빠른 수렴속도와 좋은 추정 성능을 보여준다. 비선형 채널 등화 실험을 통하여 미분 없는 칼만필터 훈련 알고리즘을 이용한 RNN의 성능이 향상되었음을 보였다.

PSD와 이종 센서 융합을 이용한 상대 항법 알고리즘 (Relative Navigation Algorithm Using PSD and Heterogeneous Sensor Fusion)

  • 김동민;양승원;김도명;석진영;김승균
    • 한국항공우주학회지
    • /
    • 제48권7호
    • /
    • pp.513-522
    • /
    • 2020
  • 본 논문은 PSD와 이종 센서 융합을 이용한 상대 항법 알고리즘에 대해 기술한다. 추종 시스템(Chaser)과 목표 시스템(Target) 간의 상대 항법을 수행하기 위해 하드웨어 시스템을 구축하고 알고리즘을 설계하여 시뮬레이션을 수행하였다. 이를 통해 상대 거리에 따른 오차 발생 경향을 확인하여 이종 센서 융합에 대한 분석을 수행하였다. 이후 구축한 하드웨어 시스템으로 지상 시험 환경을 구성하여 측정값을 획득하고 이를 후처리하여 상대 항법 알고리즘의 성능을 최종적으로 확인하였다.

다중 분산점 칼만필터를 이용한 급격한 구조손상 탐지 기법 개발 (Unscented Kalman Filter with Multiple Sigma Points for Robust System Identification of Sudden Structural Damage)

  • 이세혁;이상리;이진호
    • 한국전산구조공학회논문집
    • /
    • 제36권4호
    • /
    • pp.233-242
    • /
    • 2023
  • 본 논문에서는 다중 시그마포인트 세트(MSP)를 사용하는 분산점 칼만필터(UKF)인 UKF-MSP를 소개한다. 비선형 동적시스템을 표현하기 위해 널리 알려진 Bouc-Wen 모델을 사용하였고, 비선형성 고려가 가능한 칼만필터 중 UKF를 선정하였다. 그런데 UKF는 두 가지 인공오차와 시그마포인트의 분포를 결정하는 스케일링 파라미터의 값을 튜닝(Tuning)하는 과정을 통해 적절히 설정해야만 대상 동적시스템의 추정하고자 하는 상태(State)를 정확히 추정할 수가 있다. 본 논문에서는 후자의 스케일링 파라미터 설정 문제를 완화하고자 하였으며, MSP를 사용함으로써 기존 UKF에 비해 칼만필터 튜닝 과정에 덜 민감한 UKF-MSP를 제안하였다. 지진으로 인한 급격한 구조손상 시나리오에 대해 UKF-MSP의 안정성을 검증하였다. 제안된 방법은 튜닝과정을 완화함과 동시에 다른 칼만필터 파라미터인 인공오차에 대해서도 덜 민감한 거동을 보임을 확인하였다.

철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV (K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes)

  • 송윤호;조영욱;김성도;이태종;김명선;박인화;이희순
    • 지구물리와물리탐사
    • /
    • 제25권4호
    • /
    • pp.167-176
    • /
    • 2022
  • 심지층 특성화 기술 확보에 필요한 자체 기기 개발의 일환으로 철재 케이싱이 설치된 시추공에도 적용가능한 공곡검층기 K-DEV를 설계하고 500 m 깊이 용 시작품을 개발하였다. K-DEV는 디지털 출력을 제공하고 이미 성능이 입증된 센서들을 장착하며, 기존에 국내에서 사용하는 윈치시스템과 호환성을 갖추도록 설계되었다. K-DEV 시작품은 외경 48.3 mm 비자성 스테인레스강 하우징을 채용했으며 실험실 내에서 20 MPa까지의 방수 시험, 그리고 1 km 깊이 시추공에 삽입하여 내구성 시험을 거쳤다. 시작품을 이용해 600 m 깊이까지의 하향 및 상향 연속 검층을 수행하여 작동의 안정성 및 자료의 반복성을 확인하였다. 철재 케이싱이 설치되어 있는 시추공내에서 방위각 결정에 필수적인 자이로 센서로 K-DEV 시작품에서는 고정밀도 MEMS 자이로스코프를 채택하였다. 여기에 가속도계 자료와 각속도 자료를 융합하고 무향 칼만 필터링(Unscented Kalman Filtering)을 통해 최적화 함으로써 정확한 궤적 추적을 수행하는 알고리듬을 고안하였다. 시험 시추공에서 K-DEV 시작품과 상업적 기기와의 비교 검층을 통해 서로 매우 근접한 결과를 얻었다. 특히, MEMS 자이로 센서의 시간에 따른 drift에 의한 오차 누적 문제는 검층 전 후에 정두에서 동일한 방향으로 위치한 정지 상태에서 측정한 자료로부터 각속도를 보정함으로써 해소될 수 있으며, 철재 케이싱이 설치된 시추공에서의 공곡검층이 나공 상태에서의 결과와 거의 동일한 궤적 추정 결과를 제공함을 확인할 수 있었다. 이러한 시작품 적용 결과로서 K-DEV 개발의 방법론, 시작품의 안정성 및 자료의 신뢰성을 확보하였다고 판단된다.

모바일 증강 현실 및 항공사진을 이용한 건물의 3차원 모델링 (Towards 3D Modeling of Buildings using Mobile Augmented Reality and Aerial Photographs)

  • 김세환;;장재식;이태희
    • 전자공학회논문지CI
    • /
    • 제46권2호
    • /
    • pp.84-91
    • /
    • 2009
  • 본 논문에서는 모바일 증강 현실 시스템 및 항공사진을 이용하여 건물의 부분적 3D 모델을 생성하고, 이를 비디오 영상과 비교하여 사용자의 위치를 실시간으로 추적하는 방법을 제안한다. 제안된 시스템은 미리 생성된 모델을 사용하는 대신, 시스템 동작 중에 사용자 뷰와 항공 뷰를 결합하여 3D 모델을 생성한다. 우선 GPS의 위치에 따라 데이터베이스로부터 검색된 항공사진과, 피치를 추정하는 관성 센서를 이용하여 사용자의 초기 자세를 계산한다. 그리고 그래프 컷을 이용하여 건물의 상단의 에지를 검출하고, 제안된 비용 함수를 최소화함으로써 하단의 에지와 모퉁이 위치를 찾는다. 실시간으로 사용자의 자세를 추적하기 위해, 사용자가 관촬 중인 건물의 에지 및 벽면에서의 특이점을 이용하여 추적을 수행한다. 본 논문에서는 최소 자승 추정법과 언센티트 칼만 필터를 사용하여 카메라 자세 추정 방법을 구현하고 비교하였다. 또한 두 방법에 대하 속도와 정확도를 비교하고, Anywhere Augmentation 시나리오에 대한 중요한 기본 구성 요소들로서 실험결과의 유용성을 보였다.