• Title/Summary/Keyword: Unsaturated state

Search Result 120, Processing Time 0.018 seconds

Experimental Study on Road-Subsidence Characteristics in Unsaturated Sandy Soils (불포화 사질토의 도로함몰 특성에 관한 실험적 연구)

  • Kweon, Gichul
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2018
  • PURPOSES : The purpose of this study is to identify the road-subsidence mechanism in unsaturated sandy soils. METHODS : A series of soil chamber tests were conducted under various conditions. RESULTS : The cavity-expansion characteristics in unsaturated sandy soils due to seepage were affected by the outlet size, seepage intensity, relative density, and fine content. CONCLUSIONS : In unsaturated sandy soils, the cavity-expansion speed was affected by the outlet size, relative density, seepage intensity, and clay content; however, the cavity-expansion shape was very similar. As the outlet size and seepage intensity increased, the cavity-expansion speed increased. As the relative density increased, the cavity-expansion speed increased because of a sudden decrease in shear strength, resulting from the increased saturation (reduction of matric suction). The cavity expanded faster with the increasing clay content, up to a certain threshold. It expanded at a slower rate once it passed the threshold. Finally, it reached a stable state where the cavity did not expand due to seepage.

Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration

  • Qi, Shunchao;Vanapalli, Sai K.;Yang, Xing-guo;Zhou, Jia-wen;Lu, Gong-da
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Shallow failures occur frequently in both engineered and natural slopes in expansive soils. Rainfall infiltration is the most predominant triggering factor that contributes to slope failures in both expansive soils and clayey soils. However, slope failures in expansive soils have some distinct characteristics in comparison to slopes in conventional clayey soils. They typically undergo shallow failures with gentle sliding retrogression characteristics. The shallow sliding mass near the slope surface is typically in a state of unsaturated condition and will exhibit significant volume changes with increasing water content during rainfall periods. Many other properties or characteristics change such as the shear strength, matric suction including stress distribution change with respect to depth and time. All these parameters have a significant contribution to the expansive soil slopes instability and are difficult to take into consideration in slope stability analysis using traditional slope stability analysis methods based on principles of saturated soil mechanics. In this paper, commercial software VADOSE/W that can account for climatic factors is used to predict variation of matric suction with respect to time for an expansive soil cut slope in China, which is reported in the literature. The variation of factor of safety with respect to time for this slope is computed using SLOPE/W by taking account of shear strength reduction associated with loss of matric suction extending state-of-the art understanding of the mechanics of unsaturated soils.

Numerical Simulation of Ground Heat Exchanger Embedded Pile Considering Unsaturated Soil Condition (불포화 지반 조건을 고려한 파일 매입형 열교환기의 수치해석)

  • Choi, Jung-Chan;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.213-220
    • /
    • 2010
  • This study presents a numerical simulation model of vertical ground heat exchangers, considering unsaturated hydro static ground conditions induced by the ground water table fluctuation. Heat transfer in ground and grout is modeled by a 3-D FEM transient conductive heat transfer model, where heat transfer between circulating fluid and heat exchanging pipe is treated as 1-D quasi steady state forced convective elements. To take into account the unsaturated ground condition, soil thermal conductivity and heat capacity which are dependent on the matric suction are applied to ground elements. Parametric studies considering various ground water table conditions are conducted to investigate the influence of unsaturated hydro static ground condition on the mean heat exchange rate of ground heat exchanger. Simulation results considering water table fluctuation show 60~100% of mean heat exchange rate for a saturated soil condition and 125~208% of that for a dry soil condition. Thus consideration of unsaturated soil condition is substantially recommended for more accurate design and performance evaluation for ground heat exchangers.

  • PDF

Effect of grain size on the shear strength of unsaturated silty soils

  • Onturk, Kurban;Bol, Ertan;Ozocak, Askin;Edil, Tuncer B.
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.301-311
    • /
    • 2020
  • In this study, shear strength behavior of fine-grained soils was investigated under unsaturated conditions. The samples in the unsaturated state were subjected to a net normal stress (σ-ua) of 40 kPa and different matric suctions (ua-uw) of 50, 100 and 150 kPa. The matric suction values applied in the triaxial tests were selected according to the bubbling pressures determined from the SWC curves. The study was carried out on prepared re-constituted cylindrical samples by uniaxial consolidation of soil slurries. First, consolidated drained (CD) triaxial compression tests were performed on the saturated samples and the cohesion and angle of internal friction were determined. After that, drained triaxial compression tests under matric suctions were performed on the unsaturated samples. In order to obtain unsaturated test results, cohesion and internal friction angle values of saturated samples were used. The nonlinear surface representing the shear strength surface was approximated consisting of two planes (double planar surface). The reason for the nonlinear behavior of some soils is that the amount of sand content contained in it is relatively high and the bubbling pressure/permanent water content value is relatively low.

A study on the shear strength considering matric suction for an unsaturated soil (모관흡수력을 고려한 불포화토의 전단강도에 대한 연구)

  • Oh, Se-Boong;Kim, Tae-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.105-110
    • /
    • 2008
  • The behaviour of an unsaturated soil was analyzed by performing $K_0$ consolidated triaxial tests. Unsaturated triaxial tests were performed with matric suctions for weathered soils and could catch stress paths under consolidation and stress-strain relationships under shear. As a result, both isotropic and $K_0$ conditions had similar shear strength envelopes in the same matric suction. Especially, strength parameters could obtain by stress variables based on critical state theory reasonably which was better than those by Mohr circles at failure.

  • PDF

A semi-analytical solution to spherical cavity expansion in unsaturated soils

  • Tang, Jianhua;Wang, Hui;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • This paper presents a rigorous solution for spherical cavity expansion in unsaturated soils under constant suction condition. The hydraulic behavior that describes the saturation-suction relationship is modeled by a void ratio-dependent soil-water characteristic curve, which allows the hydraulic behavior to fully couple with the mechanical behavior that is described by an extended critical state soil model for unsaturated soil through the specific volume. Considering the boundary condition and introducing an auxiliary coordinate, the problem is formulated to a system of first-order differential equations with three principal stress components and suction as basic unknowns, which is solved as an initial value problem. Parameter analyses are conducted to investigate the effects of suction and the overconsolidation ratio on the overall expansion responses, including the pressure-expansion response, the distribution of the stress components around the cavity, and the stress path of the soil during cavity expansion. The results reveal that the expansion pressures and the distribution of the stress components in unsaturated soils are generally higher than those in saturated soils due to the existence of suction.

Estimation of Seepage Rate through Core Zone of Rockfill Dam (중심코어형 사력댐의 코어죤 침투량 예측기법)

  • Lee, Jong-Wook;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.47-58
    • /
    • 2010
  • Seepage rate through the core zone of rockfill dam, estimated from graphical technique and the equation by Sakamoto (1998), is different from the real condition because of neglecting unsaturated flow. With existing method to estimate total seepage rate, it is difficult to understand the tendency of total seepage rate changes by reservoir water level change. Steady state seepage rate and the factors affecting the time needed to attain to changes of reservoir water level and saturated hydraulic conductivity and unsaturated hydraulic properties of core material are analysed thorough the 2-D steady and unsteady state seepage analyses of Soyanggang dam. Numerical results revealed that the seepage rate can be expressed by the linear equation form and the value of unsaturated soil parameter n is the most important factor affecting the seepage rate and the time needed to attain steady state. The estimation method presented in this study can be used by the designer and the personnel of dam safety for convenient estimation of seepage rate and quantitative analysis of measured seepage rate without 2-D and 3-D numerical analyses.

Investigation on moisture migration of unsaturated clay using cross-borehole electrical resistivity tomography technique

  • Lei, Jiang;Chen, Weizhong;Li, Fanfan;Yu, Hongdan;Ma, Yongshang;Tian, Yun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.295-302
    • /
    • 2021
  • Cross-borehole electrical resistivity tomography (ERT) is an effective groundwater detection tool in geophysical investigations. In this paper, an artificial water injection test was conducted on a small clay sample, where the high-resolution cross-borehole ERT was used to investigate the moisture migration law over time. The moisture migration path can be two-dimensionally imaged based on the relationship between resistivity and saturation. The hydraulic conductivity was estimated, and the magnitude ranged from 10-11 m/s to 10-9 m/s according to the comparison between the simulation flow and the saturation distribution inferred from ERT. The results indicate that cross-borehole ERT could help determine the resistivity distribution of small size clay samples. Finally, the cross-borehole ERT technique has been applied to investigate the self-sealing characteristics of clay.

An Equation to Estimate Steady-State Seepage Rate of Rockfill Dam (사력댐의 정상상태 침투량 예측식)

  • Lee, Jong-Wook;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.69-80
    • /
    • 2011
  • In this study unsaturated seepage analysis of 8 large rockfill dam managed by Korea Water Resources Corporation, were carried out, and the seepage rate of rockfill dam was analyzed by changing reservoir water level, shape, saturated and unsaturated seepage properties of core zone to present an equation to estimate steady-state seepage rate of rockfill dam. This equation considers unsaturated seepage flow and is applicable to domestic large scale Rockfill dam with the height of more than 50m. Estimated values by the proposed equation are greater than those by the method of Sakamoto (1998), which does not consider unsaturated seepage flow. The difference of estimated values increases with the lower reservoir water level and decreases with the higher reservoir water level. We can be sure that the comparison between the measured seepage rate and the estimated seepage rate by the proposed equation for the existing rockill dam was well-matched. The proposed equation is close to the actual phenomenon compared with the existing equations (Sakamoto, 1998; Chapuis and Aubertin, 2001) because it is based on the results of unsaturated seepage analysis of dams, has upstream and downstream slopes in the range of 1Vertical: (0.2~0.3)Horizontal.

Depletion Kinetics of the Ground State CrO Generated from the Reaction of Unsaturated Cr(CO)x with O2 and N2O

  • Son, H.S.;Ku, J.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.184-188
    • /
    • 2002
  • Unsaturated $Cr(CO)_x(1{\leq}x{\leq}5)$molecules were generated in the gas phase from photolysis of $Cr(CO)_6$vapor in He using an unfocussed weak UV laser pulse and their reactions with $O_2$ and $N_2O$ have been studied. The formation and disappearance of the ground state CrO molecules were identified by monitoring laser-induced fluorescence(LIF) intensities vs delay time between the photolysis and probe pulses. The photolysis laser power dependence as well as the delay time dependence of LIF intensities from the CrO orange system showed different behavior as those from ground state Cr atoms, suggesting that the ground state CrO molecules were generated from the reaction between $O_2/N_2O$ and photo-fragments of $Cr(CO)_6$ by one photon absorption. The depletion rate constants for the ground state CrO by $O_2$ and $N_2O$ are $5.4{\pm}0.2{\times}10^{-11}$ and $6.5{\pm}0.4{\times}10^{-12}cm^3molecule^{-1}s^{-1}$, respectively.