• Title/Summary/Keyword: Unmodeled dynamics

Search Result 80, Processing Time 0.027 seconds

Constructing Nonlinear Sliding Surface for Spacecraft Attitude Control Problems

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.41-44
    • /
    • 1999
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters(MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  • PDF

Robust model reference direct adaptive pole placement control

  • Kim, Jong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.872-877
    • /
    • 1990
  • Robustness of a model refernece direct adaptive pole placement control for not necessarily minimum phase systems is studied subject to unmodeled dynamics and bounded disturbances. The adaptive control scheme involves two estimators for the system and the controller parameter estimation, respectively. The robustness is obtaind under some weak assumptions and by using both a normalized least-squares algorithm with dead zone and an appropriate nonlinear feedback.

  • PDF

Design of a Robust Controller for the Butterfly Valve with Considering the Friction (마찰을 고려한 버터플라이 밸브의 강인 제어기 설계)

  • Choi, Jeongju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.824-830
    • /
    • 2013
  • We propose a tracking control system for butterfly valves. A sliding mode controller with a fuzzy-neural network algorithm was applied to the design of the tracking control system. The control scheme used the real-time update law for the unmodeled system dynamics using a fuzzy-neural network algorithm. The performance of the proposed control system was assessed through a range of experiments.

A study on improvement of robustness in adaptive control (적응제어에 있어서의 robustness 개선을 위한 방법에 관한 연구)

  • 김홍필;민병태;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.182-184
    • /
    • 1987
  • When a .epsilon.$_{1}$-modification is applied to a plant with unmodeled dynamics and bounded output disturbance, the output error seems to be relatively large. A .epsilon.$_{1}$-modification with the same switching action as in the switching a modification is proposed to reduce the output proposed adaptive control scheme is to a second-oder plant and it can be asserted that the control objective is satisfied.

  • PDF

The Robustness of Continuous Implicit Self Tuning Controller (연속치 내재형 자기동조 제어기의 강인성)

  • Lee, Bong-Kuk;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.496-499
    • /
    • 1990
  • In this paper, the robustness of implict self tunning controller on the continuous time system is investigated. Continuous time exponentially weighted least square algorithm is used for estimating the system parameters. The pole-zero placement method is adapted for the control algorithm. On considering the control weighting factor and realizability filter the effects of unmodeled dynamics of the plant are examined by the simulation.

  • PDF

A Study on the Robust Speed Controller of Induction Motor (유도전동기의 강인 속도 제어기에 관한 연구)

  • Byun, Hwang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.612-615
    • /
    • 1997
  • In this paper, a robust speed controller considering the effect of uncertainty (plant parameter variation. external load disturbance. unmodeled and nonlinear dynamics etc..) for induction motor is proposed. Firstly. the dynamic model at nominal case of induction motor is estimated. Based on the estimated model. the IPSC ( Integral - Proportional Speed Controller) is designed. Then a DTRC (Dead-time Robust Controller) combining DTC ( Dead-time Compensator) & SRC (Simple Robust Controller) is designed to reduce the effects of parameter variation and external disturbance. Some simulated results are provided to demonstrate the effectiveness of the proposed controller.

  • PDF

A Robust Discrete-Time Adaptive Control with a Compensator (보상기를 이용한 강인한 이산 시간 적응 제어)

  • 이호진;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1610-1617
    • /
    • 1988
  • In this paper, a robust discrete-time adaptive control with compensation is proposed for single-input single-output discrete-time plants which have unmodeled dynamics. The stability of the overall system is studied using the conic sector stability theorems when a normalized constant gain parameter adaptation algorithm and a properly chosen compensation are used. An illustrative exmple shows that this compensation can also increase the parameter adaptation speed. And a method of compensation using the adaptive observation is also discussed.

  • PDF

Indirect Pole Placement Adaptive Controllers using a Nonlinear Feedback (비선형 궤환을 이용한 간접극배치 적응제어기)

  • 김홍필;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.922-933
    • /
    • 1989
  • This paper deals with an indirect pole placement adaptive controller design problem for discrete-time plants with arbitrary zeros in the presence of unmodeled dynamics and/or disturbances. The plant and controller parameters are estimated by separate estimators. The nonlinear feedback is introduced so that the estimated plant has as high degree of controllability as possible. The nonlinear feedback will be used in a finite time, after which the control algorithm becomes a standard pole placement one.

  • PDF

The Design of Sliding Model Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • To improve control performance of a non-linear system, many other reserches have used the sliding model control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However, this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network. The perturbation estimator based on the fuzzy adaptive network generates the control input of compensating unmodeled dynamics terms and disturbance. And the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluation control performance of the proposed approach, tracking control simulation is carried is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

The Design of Sliding Mode Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.506-506
    • /
    • 2000
  • To improve control performance of a non-linear system, many other researches have used the sliding mode control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However. this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network generates the control input for compensating unmodeled dynamics terms and disturbance. And, the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors to converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluating control performance of the proposed approach. tracking control simulation is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF