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Abstract

Robustness of a model reference direct adaptive pole placement
control for not necessarily minimum phase systems is stud-
ied subject to unmodeled dynamics and bounded disturbances.
The adaptive control scheme involves two estimators for the
system and the controller parameter estimation, respectively.
The robustness is obtained under some weak assumptions and
by using both a normalized least-squares algorithm with dead
zone and an appropriate nonlinear feedback.

1. Introduction

One of the recent issues in adaptive control systems is the ro-
bust stability. The robustness problem has been investigated
in several approaches by a number of researchers (see Refer-
ences in [1]). Most of the proofs of robust stability in the above
approaches were established based on the a priori bounded-
ness of the external disturbances. In the potential application,
however, boundedness of the disturbances cannot be assumed
To solve this problem, Praly [2] suggested a nor-
malization in the adaptation algorithm, and Kreisselmeier and
Anderson (1] introduced the relative dead zone which acts on a
suitably normalized, relative identification error.

In a recent paper, Girl et al. [3] presented a robust pole
placement direct adaptive control algorithm which covers both
bounded disturbances and unmodeled dynamics. Their work
may be the first complete one on robust stability of a direct
adaptive control scheme for nonminimum phase systems.

This paper presents an adaptive control algorithm which
guarantees robust stability of the resulting closed-loop adap-
tive control system with respect to bounded disturbances and
unmodeled dynamics. As an adaptive control algorithm, a
model reference direct adaptive pole placement control algo-

a priori.

rithm using specially structured nonminimal models in [4] is
employed. Since this control algorithm is derived from both
pole placement and zero placement equations, it can be ap-
plied to not necessarily minimum phase systems. As described
in {4] and [5], this algorithm has exponential data weighting
properties for past measurement data by the method of select-
ing the characteristic polynomials of the sensitivity function
filters. The robustness of this algorithm is achieved subject to
upper bounds on the system and the
controller parameters are known, including basic assumptions
of the adaptive control. This adaptive control scheme involves
two estimators for the system model parameter estimation and

following assumptions :

the controller parameter estimation, respectively. The control

law is designed from both a general causal feedback and an
additional nonlinear feedback [6] which is used to ensure that

some identification mismatch error is sufficiently small.
As in (3], a normalized least-squares algorithm with dead
zone is used, the nonlinear feedback is shown to be switched off
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within a finite time, and the tracking case is considered subject
to unmodeled dynamics and bounded disturbances. And com-
pared to [3], the nonlinear feedback term is slightly modified,
and a more accurate proof is presented for the self-excitation
capability.

In this paper, Section 2 presents the robustness problem,
Section 3 describes the proposed control algorithm, and Sec-
tiond is devoted to the robust stability analysis of the resulting
closed-loop adaptive control system. Finally some concluding
remarks follow in Section 5.

2. Statement of the Problem

Consider a discrete-time system with measurable input u(t)
and output y(t). This system to be controlled is assumed to
be modeled as a linear, time-invariant, nth order system with
modeling error 7(t) as follows:

AlgNz(t) = u()
y(t) = B(g Nz(t) +n(t) (2.1)
where Al =14 a1 + -+ apg"

B¢ =big7 + -+ bug "
and z(t) is the partial state, ¢! denotes the backward shift
operator, and the order n is chosen by the designer. The system
(2.1) can also be written as

y(8) = ()70 + m(t)

where 01 =lay- - ap by b,)7 (2.2a)
81(8) = [—3(t — 1)+ y{t— ) u(t — 1)+~ u(t ~ n)|7(2.20)
m(t) = A(g™M)n(2). (2.2¢)
It is assumed that :
Al : A(g™?) and B(gq™") are coprime.
A2 : ||64]] < p1 where py is a known positive scalar.
A3 : In(t)| < pm(t) where u is some positive scalar, and for
arbitrary 0 < ¢ < 1, m(t) is defined by

(2.2)

m(t) = om(t — 1) + max{|u{t — 1)] + |y(t — 1)],1}. (2.3)

Then it follows from assumptions A2 and A3 that

[} < vipm(t) (2.4)

where vy =1+ +/npio™". (2.4a)
The problem to be considered here is to design a robust

model reference direct adaptive pole placement controller in the
sense that, for all 0 < p < po, where pg is some positive scalar

: i) all the signals in the closed-loop adaptive control system
remain bounded ; ii) the poles of the closed-loop system are
arbitrarily assigned to the desired locations.



3. Model Reference Direct Adaptive Control

The adaptive controller consists of the identification of the sys-
tem parameters and the controller parameters, and the control
law including the identification mismatch error. A normalized
least-squares algorithm will be employed as an identification
algorithm as in [3], and a model reference direct adaptive pole
placement in [4,5] will be used as a controller structure.

3.1 Identification of the System

The system parameters 8; will be estimated using the fol-
lowing normalized least-squares algorithm with dead zone, wher

i=1[3]:
A ae gy o i Pi()8i(t) D& (2}, diluo))
u(0) = 0:(e = 1) + = 1)$i(t‘; (31)
R0 = (e - 1) - BEZDEOGTRE-_DAY

1+ ¢ ()T Pilt — 1)é; (8) A(t)

aiD{&(t),d;(pe))

if |&(2)] > di(uo)

Ai(t) = { £ () (1+6:()TP:(t-1)¢:(t) ! (3.3)
0 otherwise
&(t) — di{uo)  if &(t) > dipo)
D(&(t), di(uo)) = § 0 if (t) < di(mo)  (3.4)
&(t) + di(no)  if &(¢) < —di(po)
di(1o) = poviv1+ o (3.5)

where 5(t) = s(t)/m(t) for all scalar or vector sequence {s(t}},
0 < o <1 and po > 0 are arbitrarily chosen and

er(t) = y(t) — 1(1) s (t — 1). (3.6)

3.2 Identification of the Controller

The reference model and the characteristic polynomials Q (
¢ ') and Qz(g™?) of the sensitivity function filters are used in
the controller. They are selected for exponential data weighting
in the measurement data vectors as follows [4] :

n
wf - e * 1 i
A(q l) = Zaiq Ir al:(;)) a>1 (37)
i=0
n 1..
wf —1 — * =1 v . (oy—1 38
B(q ) ‘Z::lba ’ bt (b) bl) b>1 ( )
and
n
Q(e™) = a7, qo= (3.9)
j=0
n
Qg™ = Dwa?, aw=1 (3.10)
7=0
where
i-1
q; = un(m —im1 = Gjog)
925 = [Z‘h- by — b/ b5, bnp =0
Since @1(g~!) and Q2(g™?) should be stable, b; and x should
be chosen in the following ranges, respectively :
1
-~ <k<l1 (3.11)
a
% <bi<1 for sufficiently large n. (3.12)

From assumption A1, there exist unique polynomials H(g™1),

K(g™'), R(g™1), and $(g™") all of degree n where H(0) = K(0)
=R(0) =5(0) = 0, such that
A(g™)S(¢7) + B(e H)R(¢7Y)
=Q1{g7)(4(q7Y) - Alg=N)«) (3.13)
Ag)K(e) +B(a ) H(¢™)
=Q2(q7')(B (¢ 1) - B(s™)). (3.14)

Equation (3.13) is a pole placement equation, and (3.14) is a
zero placement equation. From these equations, we get the
following specially structured nonminimal mode] :

F(gMy(t) = G(gH)u(t) + F(g7)n(t) (3.15)

where F(gq 1)~Q1(<l 1) Q:(¢7HA(¢7Y)
+Q2( )B*(g)R ( N+ QulgTA (g H(g™Y)

G(gh) = Qx(q NQa(e" B (g7)
—-Q2(¢7)B* (g7 )S (¢ ) - @ulg™ A (¢ K (¢7H)

whose common factor L{g™1) is obtained as

L(g™") = Qi1(g7HQa (¢ H+Qi{¢ ) H (¢ H)-Q2(g 1) S (¢ )
~S(¢ Y H{g™) + R(g"HK(¢H).

The above nonminimal system model (3.15) can be written
as

v (t) = ¢2(t) 62 + ma(t) (3.16)

where 02-—-[rl-“rnsl‘“snhl---hnkl“-kn]T

$2(t) = [Q2(¢™ ) B (¢ )yt —1)--- Q2(¢7 ) B* (¢ Ny(t - n)
Qg B (¢ u{t — 1) - Q2(g7 ) B* (g7 u(t - n)

Qi(g A (g )yt — 1) Qi A (g Ny(t — n)
Qg HA (g N u(t - 1) - Qg ) A" (¢ ult - n)]”
v (1) = Qg Qg ) (B (g7 )ult) — A™(¢71)u(?))
n2(t) = Fg™)n(t).
From assumption A3, it follows :
[n2(t)] < vapm(t) (3.17)
where
= (o 2y n oy ey gy ne ),
x(-2 e o

and p; is an arbitrary positive scalar such that py > ||f2]|. As
in (3], the following assumption is used.

A4 : An upper bound p; on ||92]] is known.

The controller parameters #; are estimated using the algo-
rithm (3.1)-(3.5) where § = 2, and

e2(t) = y" () = ¢2(t)T02(t - 1).

Since the measurement data vector ¢;(t) is composed of the
past data, this controller is more easily implementable than
that of [3].

(3.18)

3.3 The Control Law

Let us first introduce the following polynomial which is the
difference between the desired and the estimated closed-loop
characteristic polynomials :

Qg ) Qe A (@) - AL e7Y)
+A(t, g )S(t,¢7") + B(t, g M) R(t, ¢ )

Il

2n
= 3> @t (3.19)
i=1
The identification mismatch error is defined as follows :
2n
e(t) = Y_al(t) (3.20)
=1
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and the following time interval is defined :

I = {t/t = 4nk,k = 1,2, - - and there exists 7 :

t—6n+1<7<t-2n suchthat e(r) > e} (3.21)

where ¢ is a given positive scalar which is chosen small enough

to ensure the robust stability of the closed-loop control system.
Given the adaptive schemes producing R(t,¢7'),S(t,¢71),

and e(t), the feedback control is generated by the control law

Qulg™Mu(t) = R(t,q7)y(t) +S(t,a7")u(t)

+Qu(g™ )y (1) + £ (1) (3.22)
where f(t)= { g +Am(t) i)ft;eerwfeise (3.22a)
a = 4n(1 + Moty /k, (3.22b)

and f is a positive constant which will be defined later, and
y*(t) is a bounded reference sequence, i.e.,

ly'(@t)| <y forallt. (3.22¢)

4. Robust Stability of the Adaptive Control System

In this section, similar result as [3] will be abtained for the
robust stability of the closed-loop adaptive control system.

4.1 Properties of the Control Algorithm

The first property to be stated is the boundedness and
asymptotic time-invariance of the parameter estimates.

Proposition 1 Given an arbitary positive scalar uo, for all
0 < p < pg, the estimation algorithm (8.1)-(3.5) has the fol-
lowing properties :

o)l < piy  F=1,2

b) lim D(&(2),di(mo)) =0, i=1,2

c) Jim 16:(t) — 6:(t ~ 1)) =0, i=1,2
d)e(t) < k() + [182()l),  for allt

where 5,-(t) = 8;{t)—6; and p'l,p'z, k. are constants depending
on p1, p2, P1(0), end P(0).
Proof : This proposition is proved in [3].

The following exponential boundedness property for m(t)

can be obtained.

Proposition 2 There ezists a positive constant vy such that
for t > 3n, one has

m(t+ 1) (vo + v + B) iftel,

o5 m(t) < { (vo+ Vi}l) otherwise (1)
Proof : Let us first prove the upper bound. From (3.22) it
follows

lu@)l < {ZH'- (O] + Isi(t) = quil [}o* " m(2)
+3Q1( Ny )+ 7(t)
< am(t) + 1) (4.2)

where ¢; is a positive constant. The second inequality follows
from proposition 1 and the fact that m(t) > 1. From (2.2),
there exists a positive constant ¢g such that

WO < i (las] + I8
(e2

+ vip)m(t)

“mon(t) + ()]

A

(4.3)

874

If t € I, from (4.2), (4.3), and (2.3), we obtain

mE+1) < om(®) + (en+ ez + vim)m(t) + 1+ (2

< om(t) + (ex +ec2 + vip + )m(t) + 1+ f(t)
< (votvp+ B)m(t)

where ¥y = 0 + ¢; + ¢ + a+ 1. The second and the last
inequalities follow from the fact that m(t) > 1. And if t & I,

m(t +1) < (vo +vap)m(t)

The lower bound can be derived directly from (2.3). &

In the following proposition a self-excitation capability of
the adaptive control system is established through the nonlinear
feedback f(t). The proof is adapted from [3].

Proposition 3 Given an arbitrary positive scalar B, there ez-
ist positive scalars p(B) and §(B) and a finite time to(0 ) such
that if 0 < p < p(B),t > to(B), and e(t) > ¢, then for arbitrary
unit vector wy and wy of dimensions 2n and 4n, respectively,
lwld:(t+7) 2 6(8), =12

for at least oner:1 <7< 10n - 2.

Proof : Substituing (2.1) in (3.22) yields for t > n

(@i HA(™Y) - S(t, e A - R(t,a 1) B(g7))z(t)
= f(t) + Qu(g7 )y (&) + R(t,a (1) (4.4)

Defining the state vector z(t) = {1¢71---g7**!z(t - 1), (4.4)
can be written

z(t+ 1) = G(t)z(t) + o(f () + Q1(a™ )" () + R(t, q'l)'lg))s)
where ‘
-1(t) —Yan(t) O
1 0 ..
G(t) =

1
and ~;(t) is the coefficient of ¢™* on the left-hand side of (4.4).
From (3.16) and (2.1), we get

$2(t)T =[¢7'Q2B" B¢
¢TIQ1AB- g "QiA'B ¢l Q14’4
+(g7'Q2B"---¢""Q2B" 0---0
g Q1A g Q1A 0---0]n(t)
for t > n. The 4n polynomial in the first term of the right-
hand side of {4.6) form a basis for the space of polynomials

with degree less than or equal to 4n.  Then there exists a
nonsingular 4m x 4n matrix Hj such that

_anBtB qﬂleB*A R q—-nQZB»A
¢"Q1AT Al 2(t)

(1.6)

¢2(i) = Hz:t(t) + Nz(t) (4.7)
where  N(t)T = [q—leB' .- _"QzB'
grQ1AY - gTmQIAT O 0]'7( )
Similarly,
$(®)T = [~¢'B---—¢ "B ¢ lAq"Al()
+ [~g 7t =g 0---0]n(t). (4.8)



As noted in [3], there exists a 2n x 4n matrix Hy of full rank
such that

é1(t) = Hiz(t) + Ni(t) (4.9)
where  Ny(t)T =[-¢7%,---,—¢7",0,---,0]n(t).

From (2.1) and (2.3), there exists a positive constant k; such
that ||z(t)]| < ky;m(t). In (3], it is proved that if the proposition
is true for z(t) it is also true for ¢;(t) and ¢3(t). Thus, in this
proof we will show that the proposition for z(t} is true.

Let —2n < k < 6n — 2 be arbitrary. For t > 3n, (4.5) can
be rewritten after some computations [6] as

in—1

2

1=In-

Yan—i-1{t)z(t +k+i+1)
1

— MIP(+R4Q Y RN R 3 venioa()

i=2n-1
x {i Gty Gt +k+35) - Gt)]z(t+ k+5)} (4.10)
5=0
where () =1,and M =

0 0 72n(t) n(t) 17
0
[9 G(t)g---G(t)*"'g] | nlt)
’71'(t) 0
1
1
0
0
1
(4.10a)
F(t+ k)T =[f(t+k) - ft+k+4n—1)] (4.10b)
Y'(t+ k)T =y {t+k) -y (t+k+4n-1)] (4.10¢)

N(t+ BT = [R(t+ kg™ In(t +8) -

R(t+k+4n—1,¢ Yn(t+k+4n—1)]. (4.10d)

(4.10a) is derived in the Appendix.

From proposition 1 there exists a constant k, > 0 such that
[%:(t)} < ky (1 <4 < 2n) for all t. And ||G(t)]| is bounded and
IG(t+ k + 7) — G(t)]]| = 0 as t — oo. Thus, the last term of
(4.10) has the following upper bound :

4n—1 [
D" vanmima O G (Gt +k+5) =~ G(2)] 2(t+k+35)} |
i=2n-1 j=0
S @n+1ksbi(t) _, max lz(t + 1)l

< (2n + 1)kskz61(t)m(t + 10n ~ 3) (4.11)

where 6, (t) is a positive function such that §;(t) — 0 as ¢t — oo.
Premultiplication of (4.10) by an arbitrary unit 4n-vector v
yields the following lower bound using (4.11) :

4n-1

|

i=2n-1

Fan-i-1 ()T 2(t+ k +i+ 1) > |[vT M F(t + k)|

=0TMQ (g7 )Y (t + k)| - [oT M N(t+ k)|
—(2n + 1)k, k.8, (t)m(t + 10n — 3) (4.12)
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and the following upper bound for a positive constant k; :

4n-1
| Y taneica()oT2(t + k + 4 +1)]
i=2n—1
4n—1
< Y kymt+k+i+1)|VTEE+E+i+1)]
t=2n—1

< (2n+1)kykym(t+10n—2) max

T
OSrSlOn—Zlv Z(t+7)]. (4.13)

Let 2n ~1 <1 < 6n— 2 be such that t+1 is an integer multiple
of 4n. Then, for at least one —4n+1+1 < k < [, using (4.10a)

F(t+ k)T = [0'-:0 k41 0---0] (a+ Bm(t +1)).

Thus, for at least one —4n+ 1+ <k <,

[WIMPF@E+k) = lvinasiel{a+Bm(t+1))
ky
> N (o + Bm(t+1)) (4.14)
where o7 = [v; v3 -+ v4n)
k, = —:f"“i" , 1<4i<4n.
i, max

Also, since |y*(t)] < y*, we have from (4.10b)

[T M Qi{g~ )Y (t + k)] |[van---vz 01]Qi(g )Y (t + k) |
ava(+ 281y
ky

2/m.

Finally, from (4.10d), assumption A3, and proposition 1,

A

(4.15)

[T M N(t+ k)|

|¥(+ R
< 2/mp pm(t+ k+4n — 1). (4.16)

Substituting (4.14)-(4.18) in (4.12), then from (4.12) and (4.13},
we get,

kg m(t+1)
2\/n(2n + )k ky m(t + 10n — 2)
2/nppu mt+k+4n—1) k8 (t) m(t+10n - 3)
(2n + 1)k,ky m(t+ 10n — 2) ky m(t+10n—2).

(4.17)
From proposition 2, since 2n ~ 1 < ! < 6n — 2, the lower
bound is

mt+1)

max |vTE(t+71)| >
0<r<10n—2

1

> .
m(t+10n — 2) = (vo + vip+ B)%(vo + 11u)én-3. (4.18)
and since —2n < k < 6n — 2, the upper bound is
m(t 4 k + 4n — 1) 1
m(t + 10n — 2) gbn-1 (4.19)
and (t+10-3) 1
m -
—_—— < = 4.20
m(t + 10n — 2) P (4:20)

Therefore, the substitution of (4.18)-(4.20) in (4.17) yields

max _|vTE(t +1)| > (B, u) - ko 15, (t)

4.
0<r<10n-2 ( 21)

where k; =kz/ky



1 ko3
(2n + Lkyky [ 2y/n(vo + vip + B)%(vo + vip)en-3

~2y/npypo ]

The rest part of this preof can be similarly shown as in {3].

h(B, 1)

Based on this self-excitation capability of the adaptive con-
trol system, it is shown in the following proposition that identi-
fication mismatch error converges to the stability interval [0, €]
in a finite time. For this purpose, let us define the following
constants :

«(8) 2kd(8)/6(B)
d(h) max{dy(1(8)) + v1u(B), da(k(8) + v21(8))}

and 0 < A, < 1is a constant arbitrarily chosen which will be
used in the proof.

Il

Proposition 4 For all 0 < u < pu(f), 40 < € < €(B), then
there exists a finite time t,(B) > to(B) such that e(t) < € for all
t > t1(B). Therefore, f(t) =0 for all t > t1{f).

The proof is given in [3].

4.2 Robust Stability

Using propositions in the previous section, the following
robust stability theorem can be established.

Theorem 1 Consider the adaptive control system consisting
of the system (2.1), the estimation algorithm (3.1)-(3.5), (3.6),
and (3.18), and the control law (3.22) subject to the assumption
A1-A4. Then there exist positive scalars g and ey such that for
all0 < p < po and O < € < €¢ and arbitrary initial conditions
the signals in the closed-loop control system are all bounded and
there exist @ positive constant k and a finite integer t, > t1(8)
such that for allt > t, one has

| Qulg™") (A" (¢71)w(t) - B(t, a7y (1)) | /m(t)

=kopo + 07 ey (4.22)
1Q1(e™Y) (A" (¢7Mu(t) ~ A(t, g™ )y* () ) | /m(t)
= kouo + 0" ey, (4.23)

Proof : From (2.2) and (3.6), we get
At g™ Ny(t) - B{t, g7 1)u(y)
= ey (t) + ¢1(t)T(01(t — 1) — 81(1)). (4.24)
From (3.22)
(@e™) = S(t, g7 M))u(t) ~ R(t, a7 )y(1)
=Q1{g My (1) + £(1). (4.25)
From (4.24) and (4.25), the following closed-loop equations
can be obtained :

Qu{a™HA (g ut) = a (1)

where  ¢(t) = R(t, ¢ Ve(t)
+R(t,q )1 ()T (1t - 1) = 02 (8)) + A(t, g7V )Qu(g™My* (¢)

(4.26)

+f;(t, N+ Qg u(t) (4.26a)
Q1(g A (T y(t) = qft) (4.27)
where  ¢(t) = (Qu(g7Y) - S(t, e H)ea(t) + (Qu(g™)

=S, N ()T (1t - 1) —0:1(t)) + B, e~ Qg™ )y (¢)
+B{t, g ) f(t) + Q(t, g~ Vu(t)- (4.27a)

From proposition 1, we get

Jim ({R(t, 7)) (01(t ~ 1) ~ 01(1))] /m(t)} =0 (4.28)
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Hm {[(Qu(g™") ~ S(t,47))6a(t) (8a(t — 1) - 81(1)) m(1)} = O.
{4.29)
From (3.19), (3.20), (2.3) and proposition 4, it follows that

for all t > t1(4),

lQ(t,a™Hu(®)] +1Q(t, e y(®)

2n
< la®)l (fult = 91 + fult - 1)
=1

< o7 m(t)e(t) < eo”m(2). (4.30)

From (3.4) and (3.5) and proposition 1, there exists a posi-
tive function 81(t) such that §;(t) — 0 as t — oo and

|R(t,q Mex(t)] /m(t)
(Q@i(¢™") = 5(t, g™ Nea(t)] /m(t)

where

ko p + 6:1(t)(4.31)
kg p 4 6:(t)(4.32)

<
<
n -1 ]
b= (100D ) o)
Finally, from proposition 4, for all ¢ > ¢,(8)
fy=o0

and since y*(t) is bounded, there exists a positive constant ks,
such that

JA( ¢ HQule™ Dy (O1+1B(e)Qu(g™ )y (8)] < ks, (4.34)

Combining (4.28)-(4.34), from (4.26a) and (4.27a) we get for
all t

{1 +1e2(0)[}/m()

(4.33)

k3
< SIS L 6y(t) (4.35
S Thept o™ T Ba() (4.35)
where 8;(t) is a positive function such that 8;(t) — 0 as t — oo.
Following Giri et al. [3] for the rest part of this proof, we can
obtain the following inequality as a stability criterion.

kn(2kap4eo™) < (1-p)(1 - 0) (4.36)

with |[h(t)] < kpp', O<kp<ocand0<p<1

where h(t} is the impulse response of the system with 1/Q(
g 1) A"(¢7?) as a transfer function. Thus, there always ex-
ist positive scalars g and € satisfying (4.36), and therefore
boundedness of m(t) as well as boundedness of all the closed-
loop signals follows. The second part of the theorem directly
follows from (4.26) and (4.27) using (4.28)-(4.33), with kg =
Aoky where A > 1 is arbitrary, and t, depends on Xg. 1

5. Conclusions

A model reference direct adaptive pole placement control
algorithm for not necessarily minimum phase systems is pro-
posed, which guarantees robust stability of the resulting closed-
loop adaptive control system subject to unmodeled dynamics
and bounded disturbances. The considered adaptive control
algorithm has exponential data weighting properties for past
data by the method of selecting the sensitivity function filters.
The robustness is achieved under some weak assumptions such
as upper bounds on the system and the controller parameters
are known, and by employing two estimators for the system and



the controller parameter estimation, respectively, and by using
both a normalized least-squares algorithm with dead zone and
an appropriate nonlinear feedback which ensures a sufficient
amount of excitation.
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Appendix

Derivation of ({.10a)

Defining
4n-7
G(ty™g = [gj-19j-2--- 900~ O (A1)
then gt
G(t)ig = [g;9j-1++90 0.~ O] (A2)
with
i

9; = > (~%()gj—i» 1< j < dn—1 (A.3)

=1

877

go = 1 A3
where %(t) = 0 ifi>2n } (A-32)
Then,
go 91 92 94an—1
90 N J4n-2
M= ’
go ' G4n—i
0 :
g0
[ O 0 72a(t) 7(t) 1
0
X ’72n(t)
7(t) Y
L 1
r 1
Mlm
- ' (4.4)
4]
| 1

where M;,, are the elements of the matrix M and

1<!,m<4n.
In general,
Mim = @an-t-k+1 + 71(t) Gan-i1—k + -+ + Y2n(t) g20-1-k+1
dn—l-k+1
= Qun-i-k+1t+ Z ¥i(t) gan-t-k+1-i

=1
= 0. (A.5)
The 2nd and the last equalities follow from (A.3a) and (A.3),
respectively.
Therefore, we get

Note that the eigenvalues of the above matrix are & 1s.



