• Title/Summary/Keyword: Unmanned weapon systems

Search Result 36, Processing Time 0.026 seconds

On the Use of SysML Models in the Conceptual Design of Unmanned Aerial Vehicles (무인항공기체계의 개념설계에서 SysML 모델의 활용에 관한 연구)

  • Kim, Young-Min;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.206-216
    • /
    • 2012
  • Today's war fields can be characterized by net-centric wars where a variety of independent weapon systems are operated in connection with each other via networks. As such, weapon systems become dramatically advanced in terms of complexity, functionality, precision and so on. It is then obvious that the defense R&D of those requires systematic and efficient development tools enabling the effective management of the complexity, budget/cost, development time, and risk all together. One viable approach is known to be the development methods based on systems engineering, which is already proved to successful in U.S. In this paper, a systems engineering approach is studied to be used in the conceptual design of advanced weapon systems. The approach is utilizing some graphical models in the design phase. As a target system, an unmanned aerial vehicle system is considered and the standard SysML is also used as a modeling language to create models. The generated models have several known merits such as ease of understanding and communication. The interrelationships between the models and the design artifacts are identified, which should be useful in the generation of some design documents that are required in the defense R&D. The result reported here could be utilized in the further study that can eventually lead to a full-scale model-based systems engineering method.

A study on the Development Direction of Unmanned Systems for Subterranean Operations for the Special Operations Teams (특수작전팀의 지하작전용 무인체계 발전방향 연구)

  • Sang-Keun Cho;Jong-Hoon Kim;Sung-Jun Park;Bum-June Kwon;Ga-Ram Jeong;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.307-312
    • /
    • 2023
  • North Korea has already been using underground space for military purposes for decades, and is currently developing it as a key base for operating asymmetric forces. Accordingly, the special operations teams need fighting methods, weapon systems, and organizational structures to carry out subterranean operations. This paper presents an unmanned system platform for subterranean operations that combines tilt-rotor type drones, high-tech sensors, communication repeaters, and small robots, and a system that can be operated by special operation teams. Based on this, the survivability of the special operations teams can be strengthened and operational utility can be maximized. Afterwards, if Special Warfare Command collects collective intelligence based on the ideas related to subterranean operations presented in this paper and further develops these, it will be possible to drive subterranean operations doctrines, weapon systems, and organizational structures optimized for the battlefield on the Korean Theater of Operations in the near future.

Effective Simulation Modeling Formalism for Autonomous Control Systems (자율제어시스템의 효과적인 시뮬레이션 모델링 형식론)

  • Chang, Dae Soon;Cho, Kang H;Cheon, Sanguk;Lee, Sang Jin;Park, SangChul
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.4
    • /
    • pp.973-982
    • /
    • 2018
  • Purpose: The purpose of this study is to develop an effective simulation modeling formalism for autonomous control systems, such as unmanned aerial vehicles and unmanned surface vehicles. The proposed simulation modeling formalism can be used to evaluate the quality and effectiveness of autonomous control systems. Methods: The proposed simulation modeling formalism is developed by extending the classic DEVS (Discrete Event Systems Specifications) formalism. The main advantages of the classic DEVS formalism includes its rigorous formal definition as well as its support for the specification of discrete event models in a hierarchical and modular manner. Results: Although the classic DEVS formalism has been a popular modeling tool, it has limitations in describing an autonomous control system which needs to make decisions by its own. As a result, we proposed an extended DEVS formalism which enables the effective description of internal decisions according to its conditional variables. Conclusion: The extended DEVS formalism overcomes the limitations of the classic DEVS formalism, and it can be used for the effectiveness simulation of autonomous weapon systems.

A Local Path Planning for Unmanned Aerial Vehicle on the Battlefield of Dynamic Threats (동적인 위협이 존재하는 전장에서의 무인 항공기 지역경로계획)

  • Kim, Ki-Tae;Nam, Yong-Keun;Cho, Sung-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • An unmanned aerial vehicle (UAV) is a powered aerial vehicle that does not carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or recoverable, and can carry a lethal or non-lethal payload. An UAV is very important weapon system and is currently being employed in many military missions (surveillance, reconnaissance, communication relay, targeting, strike, etc.) in the war. To accomplish UAV's missions, guarantee of survivability should be preceded. The main objective of this study is a local path planning to maximize survivability for UAV on the battlefield of dynamic threats (obstacles, surface-to-air missiles, radar etc.). A local path planning is capable of producing a new path in response to environmental changes. This study suggests a $Smart$ $A^*$ (Smart A-star) algorithm for local path planning. The local path planned by $Smart$ $A^*$ algorithm is compared with the results of existing algorithms ($A^*$ $Replanner$, $D^*$) and evaluated performance of $Smart$ $A^*$ algorithm. The result of suggested algorithm gives the better solutions when compared with existing algorithms.

Introduction of Military Nanosatellite Communication System Using Anti-Jamming and Low Probability of Detection (LPD) Waveforms (항재밍/저피탐 웨이브폼이 적용된 군 초소형 위성 통신체계 소개)

  • Ju Hyung Lee;Hae-Won Park;Kil Soo Jeong
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.144-153
    • /
    • 2023
  • The existing military satellite communication system was based on geostationary satellites equipped with special communication payloads against enemy's jamming and signal reception. With the advent of new weapon systems such as unmanned systems, the need for low-orbit satellite-based communication system is increasing. This paper introduces various waveform technologies suitable for cube satellite-based communication system and the operational concept of a future military nanosatellite communication system.

A study on improvement of policy of artificial intelligence for national defense considering the US third offset strategy (미국의 제3차 상쇄전략을 고려한 국방 인공지능 정책 발전방안)

  • Se Hoon Lee;Seunghoon Lee
    • Industry Promotion Research
    • /
    • v.8 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • This paper addressed the analysis of the trend and direction of the US defense strategy based on their third offset strategy and presented the practical policy implication of ensuring the security of South Korea appropriately in the future national defense environment. The countermeasures for the development ability of advanced weapon systems and secure core technologies for Korea were presented in consideration of the US third offset strategy for the future national defense environment. First, to carry out the innovation of national defense in Korea based on artificial intelligence(AI), the long-term basis strategy for the operation of the unmanned robot and autonomous weapon system should be suggested. Second, the platform for AI has to be developed to obtain the development of algorithms and computing abilities for securing the collection/storage/management of national defense data. Lastly, advanced components and core technologies are identified, which the Korean government can join to develop with the US on a basis of the Korea-US alliance, and the technical cooperation with the US should be stronger.

Strategies for Autonomous MUM-T Defense Industry (자율화 MUM-T 국방산업 전략)

  • Byungwoon Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.56-61
    • /
    • 2023
  • Recently, advancement of AI-enabled autonomous MUM-T combat system and industrial revitalization are rapidly emerging as global issues. However, the Defense Business Act of the Ministry of National Defense in Korea is judged to be somewhat insufficient compared to NATO leading countries in advancement of operation part of a weapon system as MUM-T is centered on a weapon system's own device. We established the concept of AI-enabled autonomous MUM-T to strengthen international competitiveness of complex combat systems such as future global UGV, UAV, and UMS. In addition, NATO and US-centered autonomy, interoperability, and data standardization-based defense AI MUM-T top-level platform construction and operation plan, establishment of a national defense innovation committee such as the National Science and Technology Advisory Council, review and advisory function reinforcement, and additional governance measures are proposed.

How to Derive the Autonomous Driving Function Level of Unmanned Ground Vehicles - Focusing on Defense Robots - (무인지상차량의 자율주행 기능수준 도출 방법 - 국방로봇을 중심으로 -)

  • Kim, Yull-Hui;Choi, Yong-Hoon;Kim, Jin-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.205-213
    • /
    • 2017
  • This paper is a study on the method to derive the functional level required for autonomous unmanned ground vehicle, one of the defense robots. Conventional weapon systems are not significantly affected by the operating environment, while defense robots exhibit different performance depending on the operating environment, even if they are on the same platform. If the performance of defense robot is different depending on operational environment, results of mission performance will be vary significantly. Therefore, it is necessary to clarify the level of function required by the military in order to research and develop most optimal defense robots. In this thesis, we propose a method to derive the required function level of unmanned ground vehicles, focusing on autonomous driving, one of the most vital functions of defense robots. Our results showed that the autonomous driving function depending intervention levels and evaluated functional sensitivity for autonomous driving of the unmanned vehicle using climate and topography as variables.

Analysis of SEAD Mission Procedures for Manned-Unmanned Aerial Vehicles Teaming (유무인기 협업 기반의 SEAD 임무 수행절차 분석)

  • Kim, Jeong-Hun;Seo, Wonik;Choi, Keeyoung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.678-685
    • /
    • 2019
  • Due to the changes in future war environment and the technological development of the aviation weapon system, it is required to carry out on the analysis of the Manned-Unmanned aerial vehicles Teaming(MUM-T). Conventional manned-unmanned aerial vehicles operate according to the air strategy missions and vehicles' performance. In this paper, we analyze conventional aerial vehicle's mission to derive various kinds of missions of MUM-T after analyzing the unmanned aircraft systems roadmap issued by US DoD and the air strategy of US Air Force. Next, we identify the basic operations of the vehicles to carry out the missions, select the MUM-T based Suppression of Enemy Air Defense missions(SEAD), and analyze the procedure for performing the missions step by step. In this paper, we propose a procedure of the mission in the context of physical space and timeline for the realization of the concept of MUM-T.

Consideration of Detection Range Test Results of Missile Approach Warning Equipment using UAV (UAV를 활용한 미사일접근경보 장비의 탐지거리 시험결과 고찰)

  • Byeongheon Lee;Jaeeon Kwon;Youngil Kim;Sungil Lee;Cheong Lee;Jangwook Hur
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.213-221
    • /
    • 2024
  • Aircraft's operational effectiveness is reduced due to threats from enemy anti-aircraft weapons, which is a weak point. In particular, guided missiles, which pose a threat to aircraft, are rapidly developing due to technological advancements in seekers, and are classified as one of the important technologies in weapon systems. Missile approach warning equipment installed to ensure aircraft survivability detects guided missiles and provides relevant information to respond. Tests were conducted domestically to verify the detection level of missile approach warning equipment, and test results were presented under various test conditions.