• Title/Summary/Keyword: Unmanned surface vehicle

Search Result 186, Processing Time 0.029 seconds

Development of a Mock-up of Heaving Line Launcher to Support the Recovery of Unmanned Surface Vehicle (무인선 회수 지원을 위한 히빙라인 발사장치 목업 개발)

  • Kim, Yeon-Gyu;Kim, Sun-Young;Ryu, Gye-Hyoung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.73-74
    • /
    • 2015
  • In the world the interests about a unmanned surface vehicle(USV) are growing up. However it is difficult to launch and recover a USV because of no men on board of USV. And it is more difficult in recovery than launch of USV. So in this research the heaving line launcher was developed to support the recovery of USV easier. And a mock-up was manufactured to validate for adoption to the USV. The muck-up is composed of launcher pipe, remote trigger, air tank, tow shell and heaving line. Tests in land using the mock-up were carried out. The forces by the heaving line launcher to USV were measured by a measuring table during the tests in land. In this paper the development of a mock-up of heaving line launcher, tests in land and the measured forces during tests are presented.

  • PDF

Study on a Waypoint Tracking Algorithm for Unmanned Surface Vehicle (USV) (무인수상선을 위한 경유점 추적 제어 알고리즘에 관한 연구)

  • Son, Nam-Sun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • A waypoint tracking algorithm(WTA) is designed for Unmanned Surface Vehicle(USV) in which water-jet system is installed for propulsion To control the heading of USV for waypoint tracking, the steering nozzle of water-jet need, to be controlled. Firstly, target heading is calculated by using the position information of waypoints input from the land control center. Secondly, the command for the steering nozzle of water-jet is calculated in real time by using the heading and the rate-of-turn( ROT) from magnetic compass, In this study, in order to consider the drift angle due to external disturbance such as wind and wave, the course of ground( COG) can be used instead of heading at higher speed than a certain value, To test the performance of newly-designed WTA, the tests were carried out in actual sea area near Gwang-an bridge of Busan. In this paper, the sea trial test results from WTA are analyzed and compared with those from manual control and those from commercial controller.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

Joystick Control Algorithm for Berthing and Unberthing of Waterjet Propelled Unmanned Surface Vehicle Using Actuator Nonlinear Model (구동기 비선형 모델을 이용한 워터제트 추진 무인수상정의 조이스틱기반 이접안 제어 알고리즘)

  • Seong-Jin Ahn;Mooncheol Won;Sun Young Kim;Hansol Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.165-174
    • /
    • 2023
  • Unmanned Surface Vehicle (USV)'s berthing and unberthing is the most difficult maneuvering tasks and have the highest risk of accidents. In this paper, we designed a berthing/unberthing control algorithm given human joystick command for an USV equipped with a waterjet and a bow thruster. The berthing and unberthing maneuvers are performed remotely by a joystick operator at the Ground Control Center (GCC) where the status of USV and environmental situation can be monitored. We interpret the human joystick commands into USV's desired speed, yaw rate, and heading angle commands. next, we developed a control algorithm for the desired target values of MIMO actuators (engine speed, bucket step, nozzle angle, and bow thruster state) to follow the interpreted commands. The validity of the control algorithm is confirmed through simulations and sea trials at Gwang Am port.

Behavior-based Control Considering the Interaction Between a Human Operator and an Autonomous Surface Vehicle (운용자와 자율 무인선 상호 작용을 고려한 행위 기반의 제어 알고리즘)

  • Cho, Yonghoon;Kim, Jonghwi;Kim, Jinwhan;Jo, Yongjin;Ryu, Jaekwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.620-626
    • /
    • 2019
  • With the development of robot technology, the expectation of autonomous mission operations has increased, and the research on robot control architectures and mission planners has continued. A scalable and robust control architecture is required for unmanned surface vehicles (USVs) to perform a variety of tasks, such as surveillance, reconnaissance, and search and rescue operations, in unstructured and time-varying maritime environments. In this paper, we propose a robot control architecture along with a new utility function that can be extended to various applications for USVs. Also, an additional structure is proposed to reflect the operator's command and improve the performance of the autonomous mission. The proposed architecture was developed using a robot operating system (ROS), and the performance and feasibility of the architecture were verified through simulations.

Fault-Tolerant Control System for Unmanned Aerial Vehicle Using Smart Actuators and Control Allocation (지능형 액추에이터와 제어면 재분배를 이용한 무인항공기 고장대처 제어시스템)

  • Yang, In-Seok;Kim, Ji-Yeon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.967-982
    • /
    • 2011
  • This paper presents a FTNCS (Fault-Tolerant Networked Control System) that can tolerate control surface failure and packet delay/loss in an UAV (Unmanned Aerial Vehicle). The proposed method utilizes the benefits of self-diagnosis by smart actuators along with the control allocation technique. A smart actuator is an intelligent actuation system combined with microprocessors to perform self-diagnosis and bi-directional communications. In the event of failure, the smart actuator provides the system supervisor with a set of actuator condition data. The system supervisor then compensate for the effect of faulty actuators by re-allocating redundant control surfaces based on the provided actuator condition data. In addition to the compensation of faulty actuators, the proposed FTNCS also includes an efficient algorithm to deal with network induced delay/packet loss. The proposed algorithm is based on a Lagrange polynomial interpolation method without any mathematical model of the system. Computer simulations with an UAV show that the proposed FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults and network induced delays.

Monitoring algal bloom in river using unmanned aerial vehicle(UAV) imagery technique (UAV(Unmanned aerial vehicle)를 활용한 하천 녹조 모니터링 평가)

  • Kim, Eun-Ju;Nam, Sook-Hyun;Koo, Jae-Wuk;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.573-581
    • /
    • 2018
  • The purpose of this study is to evaluate the fixed wing type domestic UAV for monitoring of algae bloom in aquatic environment. The UAV used in this study is operated automatically in-flight using an automatic navigation device, and flies along a path targeting preconfigured GPS coordinates of desired measurement sites input by a flight path controller. The sensors used in this study were Sequoia multi-spectral cameras. The photographed images were processed using orthomosaics, georeferenced digital surface models, and 3D mapping software such as Pix4D. In this study, NDVI(Normalized distribution vegetation index) was used for estimating the concentration of chlorophyll-a in river. Based on the NDVI analysis, the distribution areas of chlorophyll-a could be analyzed. The UAV image was compared with a airborne image at a similar time and place. UAV images were found to be effective for monitoring of chlorophyll-a in river.

A Study on the Conceptual Design of an Unmanned Surface Vehicle(USV) for the Korean Navy (한국형 무인 경비정(USV)의 개념설계에 관한 연구)

  • Boo Sung Youn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.59-68
    • /
    • 2004
  • Unmanned surface vehicles(USVs) have been developed for special operations in foreign navies. These will be employed to conduct critical missions including inspection, coast guard, ISR, fire protection, precision strike, mine interception warfare and antisubmarine warfare. It is also known the USVs will be deployed at the front line of the network-centric warfare to replace the manned naval operations. The unmanned operation can, thus, minimize unnecessary risk to personnel and enhance the success probability for the imposed mission. In this research, the USVs which are under operation and development in foreign navies are investigated. Based on this, an USV with $7\~10m$ of length and 10ton of weight for the Korean Navy which can be deployed near the Northern Limit Line(NLL), is proposed.

Airborne Antenna Switching Strategy Using Deep Learning on UAV Line-Of-Sight Datalink System

  • Jo, Se-Hyeon;Lee, Woo-Sin;Kim, Hack-Joon;Jin, So-Yeon;Yoo, In-Deok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.11-19
    • /
    • 2018
  • In the Unmanned Aerial Vehicle Line-Of-Sight datalink system, there is a possibility that the communication line is disconnected because line of sight can not be secured by one antenna due to changes in position and posture of the air vehicle. In order to prevent this, both top and bottom of air vehicle are equipped with antennas. At this time, if the signal can be transmitted and received by switching to an antenna advantageous for securing the line of sight, communication disconnection can be minimized. The legacy antenna switching method has disadvantages such that diffraction, fading due to the surface or obstacles, interference and reflection of the air vehicle are not considered, or antenna switching standard is not clear. In this paper, we propose an airborne antenna switching method for improving the performance of UAV LOS datalink system. In the antenna switching method, the performance of each of the upper and lower parts of the mounted antenna according to the position and attitude of the air vehicle is predicted by using the deep learning in an UAV LOS datalink system in which only the antenna except the receiver is duplicated. Simulation using flying test dataset shows that it is possible to switch antennas considering the position and attitude of unmanned aerial vehicle in the datalink system.

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan;Hung, C.C.;Ling, Hsiao-Chi
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.