• Title/Summary/Keyword: Unmanned aerial vehicle accident

Search Result 15, Processing Time 0.025 seconds

Applicable Focal Points of HFACS to Investigate Domestic Civil Unmanned Aerial Vehicle Accidents (국내 민간 무인항공기 사고조사 HFACS 적용중점)

  • Lee, Keon-Hee;Kim, Hyeon-Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.256-266
    • /
    • 2021
  • Domestic and foreign studies point to human factors as the main cause of unmanned aerial vehicle accidents, and HFACS is introduced as a technique to effectively analyze these human factors. Until now, domestic and foreign cases of analyzing the human factors of unmanned aerial vehicle accidents using HFACS were mainly targeted by military unmanned aerial vehicles, which can be used as an objective cause identification and similar accident prevention tool. In particular, identifying the focus of HFACS application considering the performance and operation conditions of domestic civilian unmanned aerial vehicles is expected to greatly help identify the cause and prevent recurrence in the event of an accident. Based on HFACS version 7.0, this study analyzed the accident investigation report data conducted by Korea Aviation and Railway Accident Investigation Board to identify the focus of HFACS application that can be used for domestic civilian unmanned aircraft accident investigations.

Characteristics Analysis of Accident Factors of UK Civil Unmanned Aircraft Using SHELL Model and HFACS (SHELL 모델과 HFACS를 활용한 영국 민간 무인 항공기 사고 요인 특징 분석)

  • Do Yun Kim;Jo Won Chang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The unmanned aerial vehicle industry has developed a lot, but the possibility of accidents is increasing due to potential risks. In this study, SHELL models and HFACS were used to analyze unmanned aerial vehicle accidents in the UK and to identify the main causes and characteristics of accidents. The main cause analyzed by the SHELL model was identified as an abnormality in the alarm system. The main cause of the accident analyzed by HFACS was identified as the technical environment. The common cause identified by the SHELL model and HFACS was identified as a mechanical problem of unmanned aerial vehicles. This is due to the lack of accurate information or functionality of the alarm system in the operator interface, which often prevents the operator from responding to sensitive information. Therefore, in order to prevent civil UAV accidents, the stability and reliability of the system must be secured through regular inspections of the UAV system and continuous software updates. In addition, an ergonomic approach considering human interfaces is needed when developing technologies.

A Study on The Industrial Complex Disaster Surveillance and Monitoring System Using Drones (드론을 활용한 산업단지 재난감시 및 모니터링 시스템에 관한 연구)

  • Su-Ji Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.233-240
    • /
    • 2024
  • In this study, we introduce a system for real-time monitoring of field conditions within an industrial complex using a 5G network UAV (: Unmanned Aerial Vehicle). When a monitoring event occurs in a sensor mounted on a UAV (detection of fire, harmful gas, or industrial disaster type human accident), key information from the sensor is transmitted to the UAS (: Unmanned Aerial System) application server. As a result of this information transmission and processing, managers or operators of the Industrial Complex Corporation were able to secure legal basis data for fatal accidents, fires, and detection of harmful gases at sites within the Industrial Complex Corporation through trigger processing for each accident risk situation.

Unmanned aerial vehicle routing algorithm using vehicular communication systems (차량 통신 시스템 기반 UAV 라우팅 알고리즘)

  • Kim, Ryul;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.622-628
    • /
    • 2016
  • The prosperity of IT technologies and the removal of restrictions regarding Unmanned Aerial Vehicles (UAVs), also known as drones, have driven growth in their popularity. However, without a proper solution to the problem of accident avoidance for UAVs, this popularity increases the potential for collisions between UAVs and between UAV and terrain features. These collisions can occur because UAVs to date have flown using radio control or image recognition based autonomous navigation. Therefore, we propose efficient UAV routing schemes to tackle the collision problem using vehicular communication systems. Performance evaluation by computer simulation shows that the proposed methods effectively reduce the collision probability and improve the routing efficiency of the UAV. Furthermore, the proposed algorithms are compatible and can be directly applied with small overhead to the commercial vehicular communication system implementation.

A Study on the Necessity of Weather Information for Low Altitude Aircraft (저고도 운용 항공기를 위한 기상정보의 필요성에 관한 연구)

  • Cho, Young-Jin;Kim, Su-Ro
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.45-58
    • /
    • 2020
  • According to the Ministry of Land, Infrastructure and Transport press release ('18.12.21.) The amendment of the Aviation Business Act will reduce the capital requirements for aviation leisure operators and make it easier to enter aviation leisure businesses by improving regulations on small air transportation business. In addition, as the scale of the UAV(Unmanned Aerial Vehicle) sector is expected to increase globally, the dramatic increase in low altitude operating aircraft, including this, must be taken into account. The low altitude aircraft category is divided into small airplanes, helicopters, light aircrafts and ultra-light aircrafts, and instructors include school instructor pilots and student pilots, military and national helicopter pilots, and aviation leisure operators. In case of low altitude aircraft, there are cases of canceling operations due to low visibility and low clouds, and aircraft accidents due to excessive operation and sudden weather phenomenon. Therefore, in order to prevent low-altitude aircraft accidents, a safe flight plan based on weather conditions and weather forecasts and more accurate and local weather forecasts and weather forecast data are needed to prepare for the rapidly changing weather conditions.

Novel Roaming and Stationary Tethered Aerial Robots for Continuous Mobile Missions in Nuclear Power Plants

  • Gu, Beom W.;Choi, Su Y.;Choi, Young Soo;Cai, Guowei;Seneviratne, Lakmal;Rim, Chun T.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.982-996
    • /
    • 2016
  • In this paper, new tethered aerial robots including roaming tethered aerial robots (RTARs) for radioactive material sampling and stationary tethered aerial robots (STARs) for environment monitoring are proposed to meet extremely-long-endurance missions of nuclear power plants. The flight of the proposed tethered aerial robots may last for a few days or even a few months as long as the tethered cable provides continuous power. A high voltage AC or DC power system was newly adopted to reduce the mass of the tethered cable. The RTAR uses a tethered cable spooled from the aerial robot and an aerial tension control system. The aerial tension control system provides the appropriate tension to the tethered cable, which is accordingly laid down on the ground as the RTAR roams. The STAR includes a tethered cable spooled from the ground and a ground tension control system, which enables the STAR to reach high altitudes. Prototypes of the RTAR and STAR were designed and successfully demonstrated in outdoor environments, where the load power, power type, operating frequency, and flight attitude of the RTAR and STAR were: 180 W, AC 100 kHz, and 20 m; and 300 W, AC or DC 100 kHz, and 80 m, respectively.

A Study on Fault Tolerance System for Flight Control Computer and Memory of Small Drones (소형 드론용 비행 제어기 및 메모리를 위한 고장 감내 시스템 연구)

  • Lee, Jeongdu;Cho, Doosan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.425-431
    • /
    • 2020
  • The market for small unmanned aerial vehicles (SUAVs) is growing rapidly as technology advances and makes it possible to use them in various fields. However, due to the rapid increase in small drones, breakdowns, collisions and falls are also increasing year by year, and technologies for reducing accident and securing safety are being actively researched. In particular, the application of a fault tolerance system to cope with unexpected failures during flight is essential. According to data released by the US Department of Defense, accidents caused by errors in flight control computers account for about 28% of all accidents. This paper describes the proposal of flight control computer system's dual structure design to tolerate flight control system failure.

Technical Status of Environmental Radiation Monitoring using a UAV and Its Field Application to the Aerial Survey (무인기를 이용한 광역부지 환경방사선측정 기술 현황 및 현장 적용 연구)

  • Ji, Young-Yong;Min, Byung Il;Suh, Kyung-Suk;Joung, Sungyeop;Kim, Kyoung-Pyo;Park, Jin-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.31-39
    • /
    • 2020
  • According to lessons learned from an accident of Fukushima Daiichi nuclear power plant, it is advisable to make a comprehensive radiation survey by the accident phase for efficient response and risk management using diverse survey platforms. This study focuses on the technical status of environmental radiation monitoring using a UAV (Unmanned aerial vehicle) and the performance test of developed aerial survey system based on two detectors with an high energy resolution through the field application to contaminated areas. Finally, the performance of aerial survey at diverse flight heights was successfully achieved by introducing the correction factor to represent the results into ambient dose rate at 1m above the ground.

Software Design and Verification Method of Flight Data Recorder for Unmanned Aerial Vehicle (무인항공기용 비행자료 기록장치 소프트웨어 설계 및 검증 방안)

  • Yang, Seo-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.163-172
    • /
    • 2020
  • Flight data recorder (FDR) for accident investigation is required to comply with EUROCAE(ED-112) standard so that flight data can be restored when exposed to extreme conditions due to aircraft crash. Since the ED-112 standard defines the general requirements for all aircraft, it is essential to analyze detailed requirements for FDR software to apply appropriate requirements selectively according to the configuration and operation concept of a specific aircraft. In this paper, the software requirements applicable to unmanned aircraft will be analyzed and the FDR software design will be proposed. Also, a software verification method for each requirement will be presented to verify that the implemented software is designed to satisfy all requirements.

Design and Implementation of Wi-Fi based Drone to Save People in Maritime (해상 인명구조를 위한 무선랜기반 드론 설계 및 구현)

  • Kim, Dong Hyun;Shin, Jae Ho;Kim, Jong Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • This paper is to design and implement the drone that supports a wideband multimedia communication and a long-range to save people in maritime. The drone is an Unnamed Aerial Vehicle (UAV) that is controlled by a radio wave not by people boarding the machine. We use the drone to respond quickly to the boating accident. To develop a smart drone for the high speed seamless video streaming in a long-range maritime, a necessary techniques are hardware design techniques that design structure of a drone, controlling techniques that operate a drone and communication techniques that control a drone in a long distance. In this paper, the limitations and techniques to design and implement the structure of drone supporting wideband multimedia communication for long-range maritime are explained. By expanding this communication drone network, it is aimed at improving utility of a drone.