• 제목/요약/키워드: Unmanned Robot

검색결과 206건 처리시간 0.022초

임무에 따른 하박 교체형 고 가반하중 양팔로봇의 설계: 구난 및 물체 핸들링 (Design of High Payload Dual Arm Robot with Replaceable Forearm Module for Multiple Tasks: Human Rescue and Object Handling)

  • 김휘수;박동일;최태용;도현민;김두형;경진호;박찬훈
    • 로봇학회논문지
    • /
    • 제12권4호
    • /
    • pp.441-447
    • /
    • 2017
  • Robot arms are being increasingly used in various fields with special attention given to unmanned systems. In this research, we developed a high payload dual-arm robot, in which the forearm module is replaceable to meet the assigned task, such as object handling or lifting humans in a rescue operation. With each forearm module specialized for an assigned task (e.g. safety for rescue and redundant joints for object handling task), the robot can conduct various tasks more effectively than could be done previously. In this paper, the design of the high payload dual-arm robot with replaceable forearm function is described in detail. Two forearms are developed here. Each of forearm has quite a different goal. One of the forearms is specialized for human rescue in human familiar flat aspect and compliance parts. Other is for general heavy objects, more than 30 kg, handling with high degree of freedom more than 7.

무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가 (Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility)

  • 김수로;박관인;김상욱;백승한
    • 터널과지하공간
    • /
    • 제34권1호
    • /
    • pp.1-14
    • /
    • 2024
  • 폐광산의 갱도 입구를 통해 고속 라이다(Light Detection And Ranging, LiDAR) 장비가 탑재된 무인이동체를 투입하여 폐광의 갱도를 형상화하기 위한 기술이 제안되었다. 직경이 1.5 m 이상인 좁은 갱도에 바닥이 슬러지 형태로 미끄럽고 장애물이 있는 환경에서 무인 이동체를 운영할 때 고려할 사항을 검토하였다. 육상환경 이동을 위해 4족 보행 로봇을 활용하였으며 항공 환경 이동을 위해 쿼드콥터 드론이 활용되었다. 수중환경의 갱도에 투입하기 위해서 수중 드론이 사용되었다. 무인 이동체를 실제 광산 현장에 투입하여 폐광 현장용 이동체가 고려해야 할 변수들을 도출하였다. 폐광산 갱도 형상화용 센서로서 2차원 영상 기반의 solid-state 라이다가 사용되었다. 방사형으로 측정되는 라이다의 특성을 고려하여 고정 경사각을 두어 회전시켜 운영하여 갱도 형상화를 위한 효율성을 높이고 동시에 장애물 감지도 같이 수행할 수 있도록 제안하였다. Solid-state 라이다를 이용하여 측정데이터로부터 센서의 자세와 로봇의 자세를 반영하여 현실 좌표계 데이터로 변환하기 위한 계산기법이 도출되었다. 라이다 센서와 무인 비행체가 결합하여 실제 현장에 투입하여 갱도 형상을 추출하였다. 마지막으로 실제 현장에서 효용성을 높이기 위한 요소를 도출하였다.

무인수중로봇을 위한 지능형 자율운항시스템 (An Autonomous Navigation System for Unmanned Underwater Vehicle)

  • 이영일;정희;김용기
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권3호
    • /
    • pp.235-245
    • /
    • 2007
  • 무인수중로봇은 인간의 직접적인 접근이 제한되는 위험한 지역을 운항하기 때문에 인식, 결정, 그리고 행동과 같은 영역전문가의 고유능력을 수행하는 지능형 제어소프트웨어를 반드시 탑재해야한다. 본 논문에서는 다양한 무인항체에 적용 가능한 RVC 지능시스템 모델을 제안하며, 또한 충돌회피시스템, 항해 계획시스템, 그리고 충돌위험도산출시스템으로 구성된 무인수중로봇을 위한 지능형 자율운항시스템을 개발 한다. 충돌회피시스템에서는 퍼지관계곱에 기반한 장애물회피 알고리즘을 제안하는데 이는 생성경로 관점의 안전성과 효율성을 보장한다. 그리고 항해계획시스템에서는 폴리선을 이용한 항로계획 알고리즘을 제안 한다. 제안된 지능형 자율운항시스템의 성능검증을 위해 환경관리자, 객체, 그리고 3차원뷰어로 구성된 시뮬레이션시스템을 개발하여 시뮬레이션을 수행한다.

Patent Trend of Unmanned and Automated Agricultural Production - Open Field Operation -

  • Kim, YongJoo;Chung, SunOk;Lee, ChoongHan;Lee, DaeHyun;Lee, KyeongHwan
    • Agribusiness and Information Management
    • /
    • 제6권1호
    • /
    • pp.30-36
    • /
    • 2014
  • This study was conducted to determine the major patent and analyze the patent trend of unmanned and automated agricultural production for the open field operation. As a result of conducting a search for patent applications related to these technologies, 1,080 valid patents were selected by evaluating the relevance of the patents and removing noise patents. As a result of the country-based analysis using the selected valid patents, it was found out that the largest number of patent applications were filed in the United States with 541 cases, followed by Japan with 326 cases, the European Union with 128 cases, and Korea with 85 cases. Upon classifying the valid patents into core technology, the path generation and tracking technology accounts for 33% with 353 cases; the implementing control with environmental condition technology accounts for 22% with 236 cases; the robot design technology accounts for 21% with 228 cases; the plant and environment sensing technology accounts for 19% with 206 cases; the yield and quality monitoring technology accounts for 5% with 58 cases. Finally, 10 core patents were selected by performing a patent index evaluation. The United States registered all of the 10 core patents. The results showed that Korea falls behind in the open field-related unmanned and automated agricultural production, compared to other developed agricultural countries.

2차원 레이저 스캔을 이용한 로봇의 산악 주행 장애물 판단 (Obstacle Classification for Mobile Robot Traversability using 2-dimensional Laser Scanning)

  • 김민희;곽경운;김수현
    • 한국군사과학기술학회지
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2012
  • Obstacle detection is much studied by using sensors such as laser, vision, radar and ultrasonic in path planning for UGV(Unmanned Ground Vehicle), but not much reported about its characterization. In this paper not only an obstacle classification method using 2-dimensional LMS(Laser Measurement System) but also a decision making method whether to avoid or traverse the obstacle is proposed. The basic idea of decision making is to classify the characteristics by 2D laser scanned data and intensity data. Roughness features are obtained by range data using a simple linear regression model. The standard deviations of roughness and intensity data are used as measures for decision making by comparing with those of reference data. The obstacle classification and decision making for the UGV can facilitate a short path to the target position and the survivability of the robot.

6x6 인휠로봇차량의 회전차조향거동에 관한 연구 (A Study on the Behavior of Skid Sleeving on Unmanned Wheeled Vehicle with Suspension System)

  • 조성원;한창수;이정엽
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.79-85
    • /
    • 2007
  • The skid-steering method that applied a number of mobile robot currently is very effective in narrow area. But it contains several problems of its natural properties, slip, occurred by different direction between vehicle's driving and wheel's rotary. From this thesis we want to suggest suitable structure of $6{\times}6$ skid steering wheeled vehicle and method of driving by analyzing the behavior of $6{\times}6$ skid-steered wheeled vehicle by engineering analytical method

메카넘 휠 이동로봇의 바퀴 슬립을 고려한 위치 추정 연구 (A Study of Position Estimation Considering Wheel Slip of Mecanum Wheeled Mobile Robot)

  • 오인진;권건우;양현석
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.401-407
    • /
    • 2019
  • In this paper, the position estimation considering wheel slip of mecanum wheeled mobile robots is discussed. Since the mecanum wheeled mobile robot does not need a space to rotate, it is very suitable in narrow industrial fields. However, the slip caused by the roller attached to the wheel makes it difficult to estimate the position precisely. Due to these limitations, mecanum wheels are rarely applied to unmanned mobile robots in automation factories. In this paper, a method to compensate the orientation and distance error caused by the slip is proposed. The exact orientation is measured by fusing gyro and magnetometer sensor data with application of Kalman filter. In addition, the kinematic model accounting slip effects will be defined to compensate the distance error.

UUV의 수중 도킹을 위한 전자기파 신호 기반의 위치인식 센서 개발 (The Underwater UUV Docking with 3D RF Signal Attenuation based Localization)

  • 곽경민;박대길;정완균;김진현
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.199-203
    • /
    • 2017
  • In this paper, we developed an underwater localization system for underwater robot docking using the electromagnetic wave attenuation model. Electromagnetic waves are generally known to be impossible to use in water environment. However, according to the conclusions of the previous studies on the attenuation characteristics in underwater, the attenuation pattern is uniform and its model was accurately proposed and verified in 3-dimensional space via the omnidirectional antenna. In this paper, a docking structure and localization sensor system are developed for a widely used cone type docking mechanism. First, we fabricated electromagnetic wave range sensor transmit modules. And a mobile sensor node is equipped with unmanned underwater vehicle(UUV)s. The mobile node senses the four different signal strength (RSS: Received Signal Strength) from fixed nodes, and the obtained RSS data are transformed to each distance information using the 3-Dimensional EM wave attenuation model. Then, the relative localization between the docking area and underwater robot can be achieved according to optimization algorithm. Finally, experimental results show the feasibility of the proposed localization system for the docking induction by comparing the errors in the actual position of the mobile node and the theoretical position through the model.

밭 노지 환경 주행을 위한 모듈형 농업 로봇 플랫폼에 대한 연구 (A Study on Modular Agricultural Robotic Platform for Upland)

  • 조용준;우성용;송수환;홍형길;윤해룡;오장석;김준성;김동우;서갑호;김대희
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.124-130
    • /
    • 2020
  • This paper designed modular agricultural robotic platform capable of a variety of agricultural tasks to address the problems caused by a decline in agricultural populations and an increase in average age. We propose a modular robotic platform that can perform many tasks required in field farming by replacing only work modules with common robotic platforms. This platform is capable of steering while driving on four wheels in an upland environment where farm work is performed, and an attitude control module is attached to each drive module to control the attitude of the platform. In addition, the width of the platform is designed to be variable in order to operate in various ridges according to the crop cultivation method. Finally, we evaluated five items: variable width, gradient, attitude control angle, step and road speed in order to carry out the farming industry while maintaining a stable posture.

안정성 향상을 위한 자율 주행 로봇의 실시간 접촉 지면 형상인식 (Real-time Recognition of the Terrain Configuration to Increase Driving Stability for Unmanned Robots)

  • 전봉수;김자영;이지홍
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.283-291
    • /
    • 2013
  • Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor(exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Thereby, UGVs have some difficulties regarding to finding optimal driving conditions for maximum maneuverability. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit(IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.