• Title/Summary/Keyword: Unloading method

Search Result 313, Processing Time 0.03 seconds

Strength Estimation of Composite Joints Based on Progressive Failure Analysis (점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF

Strength of UD-Fabric Hybrid Laminated Composite Joints Based on Progressive Failure Analysis (점진적 파손해석 기법을 이용한 일방향-평직 혼합 적층 복합재 체결부의 강도)

  • 신소영;안현수;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.17-21
    • /
    • 2002
  • A finite element method based on the two-dimensional progressive failure analysis is presented for characterizing the strength and failure of the unidirectional-fabric hybrid laminated composite joints under pin loading. The 8-node laminated shell element is incorporated in the updated Lagrangian formulation. Various failure criteria including the maximum stress, Tsai-Wu, Yamada-Sun, and combinations of them are used in conjunction with the complete unloading stiffness degradation method. For the verification, joint tests are conducted for the specimens with various geometries. Although there are some differences depending on the geometry, the finite element model using the Yamada-Sun or the combined Yamada-Sun and Tsai-Wu criterion predicts the failure strength best.

  • PDF

Optimization of a Train Suspension using Kriging Meta-model (크리깅 메타모델에 의한 철도차량 현수장치 최적설계)

  • Lee, Kwang-Ki;Lee, Tae-Hee;Park, Chan-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.339-344
    • /
    • 2001
  • In recent engineering, the designer has become more and more dependent on the computer simulations such as FEM (Finite Element Method) and BEM (Boundary Element Method). In order to optimize such implicit models more efficiently and reliably, the meta-modeling technique has been developed for solving such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). It is widely used for exploring the engineer's design space and for building meta-models in order to facilitate an effective solution of multi-objective and multi-disciplinary optimization problems. Optimization of a train suspension is performed according to the minimization of forty-six responses that represent ten ride comforts, twelve derailment quotients, twelve unloading ratios, and twelve stabilities by using the Kriging meta-model of a train suspension. After each Kriging meta-model is constructed, multi-objective optimal solutions are achieved by using a nonlinear programming method called SQP (Sequential Quadratic Programming).

  • PDF

Model-based Estimation of Production Parameters of Electronics FAB Equipment (모델기반의 전자부품 FAB설비 생산기준정보 추정)

  • Kang, Dong-Hun;Kim, Min-Kyu;Choi, Byoung-Kyu;Park, Bum-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.166-173
    • /
    • 2007
  • In this paper, we propose a model-based approach to estimating production parameters of semiconductor FAB equipment. For FAB scheduling, for example, we need to know equipment's production parameters such as flow time, tact time, setup time, and down time. However, these data are not available, and they have to be estimated from material move data such as loading times and unloading times that are automatically collected in modern automated semiconductor FAB. The proposed estimation method may be regarded as a Bayes estimation method because we use additional information about the production parameters. Namely, it is assumed that the technical ranges of production parameters are known. The proposed estimation method has been applied to a LCD FAB, and found to be valid and useful.

Residual Stress Analysis in Bi-material Metal Joint under Bending Moment by Finite Element Method (이종재료 금속조인트의 굽힘에 의한 잔류응력 해석)

  • Baek Tae-Hyun;Jung Girl;Park Tae-Geun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.448-451
    • /
    • 2005
  • It was observed that after unloading or removal of the load from the specimen subjected to bending stress, partial or full elastic spring back occurred and considerable stresses have resulted while plastic deformation was considered. ABAQUS is a suite of powerful engineering simulation programs, based on the finite element method. In this paper, it was used as the main tool to analyze elastic and plastic deformations of hi-material metal joint. In the case of elastic deformations, the results were comparable to the theoretical data. Plastic deformations and residual stresses of hi-material metal joint under bending moment were obtained by ABAQUS; where the theory needs to be studied and improved further to verify the results.

  • PDF

Collision Avoidance Algorithms of Multiple AGV Running on the Fixed Runway Considering Running and Working Time (다중 AGV의 이동시간과 작업시간을 고려한 고정 경로에서 충돌 회피 알고리즘)

  • Ryu, Gang Soo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1327-1332
    • /
    • 2018
  • An AGV(Automated Guided Vehicle) where is running on production automated system is related efficiency of production system similarly. On previous study proposed a path collision avoidance algorithms using shortest path of AGV. Running time about loading and unloading with shortest path of AGV is important factor to decide the production system efficiency. In this paper, we propose a method of shortest path and shortest time. Also propose the decision making method of collision avoidance position for setup a shortest runway for next command. To do verify the proposed method consist a simulation for AGV. Finally, we compare and analyse the proposed system between the existing system and show that our system can effectively the performance.

Modeling the Effect of Water, Excavation Sequence and Reinforcement on the Response of Tunnels

  • Kim, Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.161-176
    • /
    • 1999
  • A powerful numerical method that can be used for modeling rock-structure interaction is the Discontinuous Deformation Analysis (D D A) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the D D A method have been proposed in the literature, the method is not capable of modeling water-block interaction, sequential loading or unloading and rock reinforcement; three features that are needed when modeling surface or underground excavation in fractured rock. This paper presents three new extensions to the D D A method. The extensions consist of hydro-mechanical coupling between rock blocks and steady water flow in fractures, sequential loading or unloading, and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the D D A method with the new extensions are presented. Simulations of the underground excavation of the \ulcornerUnju Tunnel\ulcorner in Korea were carried out to evaluate the influence of fracture flow, excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that fracture flow and improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the D D A program with the three new extensions can now be used as a practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

Automated Alignment of Transporter and Stowage Using the Principle of Linetracer (라인트레이서의 원리를 이용한 트랜스포터와 스토웨지의 자동 정렬)

  • Hong, Yun-Ki;Park, Ki-Hun;Yoon, Tae-Sung;Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1926-1927
    • /
    • 2011
  • In this paper, an alignment method between a transporter and a stowage is presented for the automation of loading and unloading operations in the mobile harbor system. The principle of linetracer is utilized for the automatic alignment of transporter and stowage, and the effectiveness of the alignment method is proved by a simulated experiment using mobile robot.

  • PDF

Control for Multi-variable in Crane System using Fuzzy Learning Method (퍼지학습법을 이용한 크레인 시스템의 다변수 제어)

  • Lim, Yoon-Kyu;Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.144-150
    • /
    • 1999
  • n active control for the swing of crane systems is very important for increasing the productivity. This article introduces the control for the position and the swing of a crane using the fuzzy learning method. Because the crane is a multi-variable system, learning is done to control both position and swing of the crane. Also the fuzzy control rules are separately acquired with the loading and unloading situation of the crane for more accurate control. The result of simulations shows that the crane is just controlled for a very large swing angle of 1 radian within nearly one cycle.

  • PDF

An efficient numerical simulation of the cyclic loading experiments on RC structures

  • Lykidisa, Georgios Ch.;Spiliopoulos, Konstantinos V.
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.343-359
    • /
    • 2014
  • In this work a numerical method to simulate the response of reinforced concrete structures subject to cyclically imposed displacements is proposed. The method consists of a combination of a displacement and load controlled version of the Newton-Raphson iterative technique, used for the loading and the unloading part of the cycles respectively. The whole procedure is combined with a relatively simple concrete model whose only material parameter is its uniaxial compressive strength. The proposed methodology may realistically simulate, in an easy way, the physical process of any experimentally tested RC structure under imposed displacements cycles. The efficiency of the approach is demonstrated through a series of analyses of experimentally tested specimens reported in the literature.