• Title/Summary/Keyword: Unknown Input Observer

Search Result 77, Processing Time 0.027 seconds

Climbing Angle Estimation in Yawing Motion by UIO (UIO를 이용한 선회 시 등판각 추정)

  • Byeon, Hyeongkyu;Kim, Hyunkyu;Kim, Inkeun;Huh, Kunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.478-485
    • /
    • 2015
  • Availability of the climbing angle information is crucial for the intelligent vehicle system. However, the climbing angle information can't be measured with the sensor mounted on the vehicle. In this paper, climbing angle estimation system is proposed. First, longitudinal acceleration obtained from gyro-sensor is compared with the actual longitudinal acceleration of the vehicle. If the vehicle is in yawing motion, actual longitudinal acceleration can't be approximated from time derivative of wheel speed, because lateral velocity and yaw rate affect actual longitudinal acceleration. Wheel speed and yaw rate can be obtained from the sensors mounted on the vehicle, but lateral velocity can't be measured from the sensor. Therefore, lateral velocity is estimated using unknown input observer with nonlinear tire model. Simulation results show that the compensated results using lateral velocity and yaw rate show better performance than uncompensated results.

Design of Unknown Disturbance and Current Observer for Electric Motor Systems (전동기 시스템의 미지외란 및 전류 관측기 설계)

  • Lee, Myoungseok;Jung, Kyungmo;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.615-620
    • /
    • 2015
  • DOB (Disturbance Observer) is an useful control method for estimating the disturbance applied to dynamic systems. Disturbance observer can be used to implement a robust control system to generate a control input for rejecting the disturbance, and it can be also used to estimate the disturbance to obtain information. The system that uses disturbance estimation is investigated for high performance control such as automatic door systems, walking robot and electric power steering system in vehicles. In this paper, a novel disturbance observer which is called disturbance and current observer for estimating load torque in the motor system is proposed. The difference between the DOB for disturbance rejection and DCOB is mathematically verified. Current and angular velocity are required for estimating the load torque of the motor in DOB. However, the DCOB can estimate load torque and current without current sensor. DCOB is designed based on modeling of the motor system. Appropriate Q-filter is selected and the applicability of DCOB is verified by simulation. The estimated disturbance and current of the electric motor can be verified without current sensor, as experiments of the actual motor system.

Modelling of High-Speed Pantograph and Controller Design Using Disturbance Observer (고속 팬터그래프의 새로운 동적 모형 및 외란관측기를 이용한 제어기 설계)

  • Jo, Nam-Hoon;Lee, Kang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2233-2239
    • /
    • 2007
  • The pantograph-catenary system is one of important components for high-speed rail system that are powered electrically. Electrical power is delivered from a catenary structure to the train via a pantograph and thus it is very important to regulate the contact force between catenary and pantograph. Although a lot of research results for active pantograph have been reported, most of them have made an unrealistic assumption that the catenary displacement is constant with respect to the time. In this paper, we present a new pantograph model that regards the catenary displacement as an unknown disturbance input. Moreover, a disturbance observer based controller is proposed to remove the effect of disturbance, i.e., the catenary displacement variation. The computer simulation result shows that the substantial improvement in regulating the contact force can be achieved by the proposed controller.

Composite Fault Detection and Isolation for Uncertain Systems (불확정 시스템에서의 복합성 이상검출 및 격리)

  • Yu, Ho-Jun;Kim, Dae-U;Gwon, O-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.257-262
    • /
    • 1999
  • This paper proposes a composite fault detection and isolation method by combining the parameter estimation method[1] with the observer-based method[2] to take advantages of both methods. Some properties of the parameter estimation method and the observer-based method are revieved, and the composite algorithm is presented. To exemplify the performance of the method proposed, some simulations applied to remotely piloted vehicle are performed.

  • PDF

An Instrument Fault Detection Scheme using Function Observers (함수관측자를 이용한 장치고장검출 기법)

  • Lee, Sang-Moon;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.91-97
    • /
    • 2006
  • A major difficulty with the practical application of the multiple observer based IFDI schemes is the computational burden of the residual generation. In this paper, a new residual generator that employs function observers is proposed to reduce the computational burden, and the design methods of the IFDIS, equipped with the residual generator, are presented. The function observers employed in the residual generator can be considered as a dual of the unknown input (function) observer And it can be designed to estimate the measurement errors that are due to sensor faults. The error estimates are further processed to generate the residuals by which reliable fault detection/isolation result car be obtained. The proposed scheme is more useful, in real-time application, than any other multiple state observer based IFDISs. It can be effectively applied to fault tolerant control because the failure effects can be compensated by the use of the estimates of measurement errors. The proposed IFDI scheme is applied to an inverted pendulum control system for the IFDI of failed sensor and fault compensation.

Design of Adaptive Observer Applied to M.R.A.C. by Selection of State Variable Filter (상태변수 필터 선정에 의한 적응 관측기의 설계 및 기준모델 적응제어)

  • 홍연찬;김종환;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.597-602
    • /
    • 1987
  • In this paper, an adaptive observe based upon the exponentially weighted least-squares method is implemented in the design of a model reference adaptive controller for an unknown time-invariant discrete single-input single-output linear plant. A method of selecting the state variable filter is proposed. In this scheme, all the past data are weithted exponentially with the weighting coefficient.

  • PDF

Operational matrix for differentiation of Haar function and its application for systems and control (하알함수 미분연산형렬의 유도와 시스템해석으로의 응용)

  • Ahn, P.;Kang, K.W.;Kim, M.K.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2200-2202
    • /
    • 2003
  • In this paper, differentiation operational matrix for Haar function is derived. Proposed method only using a matrix calculation of Haar discrete matrix and block-pulse function's integration operational matrix. It would be possible to use to design an a1gebraic estimator for fault detection or unknown input observer effectively.

  • PDF

Actuator Fault Diagnostic Algorithm based on Hopfield Network

  • Park, Tae-Geon;Ryu, Ji-Su;Hur, Hak-Bom;Ahn, In-Mo;Lee, Kee-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.211-217
    • /
    • 2000
  • A main contribution of this paper is the development of a Hopfield network-based algorithm for the fault diagnosis of the actuators in linear system with uncertainties. An unknown input decoupling approach is introduced to the design of an adaptive observer so that the observer is insensitive to uncertainties. As a result, the output observation error equation does not depend on the effect of uncertainties. Simultaneous energy minimization by the Hopfield network is used to minimize the least mean square of errors of errors of estimates of output variables. The Hopfield network provides an estimate of the gains of the actuators. When the system dynamics changes, identified gains go through a transient period and this period is used to detect faults. The proposed scheme is demonstrated through its application to a simulated second-order system.

  • PDF

A Study on Load Vibration Control in Crane Operating

  • Le, Nhat-Binh;Lee, Dong-Hun;Kim, Tae-Wan;Kim, Young-Bok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.58-60
    • /
    • 2017
  • In the offshore crane system, the requirements on the operating safety are extremely high due to many external factors. This paper describes a model for studying the dynamic behavior of the offshore crane system. The obtained model allows to evaluate the fluctuations of the load arising from the elasticity of the rope. Especially, in this paper, the authors design control system in which just winch rotation angle and rope tension are used without load position information. The controller design based on input-output feedback linearization theory is presented which can handle the effect of the elasticity of the rope and track the load target trajectory input. Besides that, a full order observer is designed to estimate unknown states. Finally, By the experiment results, the effectiveness of proposed control method is evaluated and verified.

  • PDF

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan;Hung, C.C.;Ling, Hsiao-Chi
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.