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ABSTRACT

A main contribution of this paper is the development of a Hopfield network-based algorithm for the fault
diagnosis of the actuators in linear systemns with uncertainties. An unknown input decoupling approach is
introduced to the design of an adaptive observer so that the observer is insensitive to uncertainties. As a result,
the output observation error equation does not depend on the effect of uncertainties. Simultaneous energy
minimization by the Hopfield network is used to minimize the least mean square of errors of estimates of
output variables. The Hopfield network provides an estimate of the gains of the actuators. When the system
dynamics changes, identified gains go through a transient period and this period is used to detect faults. The
proposed scheme is demonstrated through its application to a simulated second-order system.

1. Introduction

Artificial neural networks offer the advantage of
performance improvement through learning using
parallel and distributed processing. These networks are
implemented using massive connections among
processing units with variable strengths, and they are
attractive for applications in system identification and
control [1].

Hopfield and Tank [2] demonstrated that some
classes of optimization problems can be programmed
and solved on neural networks. They have been able to
show the power of neural networks in solving difficuit
optimization problems [1]. The main advantage of the
Hopfield network is that it can perform the least squares
based minimization in parallel fashion. Furthermore,
the Hopfield based neural network identification can
be applied to nonlinear systems provided that the
process model is linear in terms of the parameters to
be estimated but nonlinear in terms of the process
input and output [3]. In the recent years, there has been
some success in using the Hopfield network for
estimation purposes of system parameters [1,3]. Chu et
al. [1] identified the system in the state-space form
using Hopfield network. Srinivasan and Batur [3]
implemented least squares algorithm using the
Hopfield network to estimate the parameters of a
discrete time system.

The object of this paper is to indicate how to apply
the Hopfield network to the problem of identification
of the gains of the actuators in linear systems, where
the change of the gains of the actuators means the
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actuator fault. The mean-square error typically is used
as a performance criterion in identification of the gains
of the actuators. Our motivation is to study whether it
is possible to express idenification problems of the
gains of the actuators in the form of programming the
Hopfield optimization network. By measuring inputs
and outputs, a procedure is presented for programming
the Hopfield network. The application of the proposed
algorithm to actuator fault diagnosis is illustrated by a
second-order system.

2. Hopfield network model

In the continuous Hopfield model, the behavior of a
neuron is governed by the following differential
equation [2]:

Wi Y S y+r,15isn,

77 AT 1sis, M
j=1

where N is the total number of neurons, U,; is the

neuron's internal state for neuron i, V; is the output of

neuron j, T} is the connection weight from neuron j to

neuron /, and /; is a bias input to neuron i. The neuron's

output
V; = gAU) @

is a nondecreasing function of the activation level,
where g(*) represents the input-output characteristic of
a nonlinear amplifier and the scaling parameter A
effectively defines the steepness of the nonlinearity.
Most implementation of Hopfield networks employ a
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sigmoid activation function such as the tanh function:
V; = g(AU) = Gianh(AU), 3)

where LG; indicates the asymptotic limits for U;=
*co, It has been shown by Hopfield [2] that if the
following conditions are imposed then the network
converges to a set of stable states:
@ the synaptic weights are symmetric, T; = T}
@ g(+) and its inverse are monotone increasing
functions of their arguments as in the case of sigmoid
function,
and furthermore, these states correspond to a local
minima of the following energy function:

E = —[(U)VITV + IV], @

when the gains of the activation function are
sufficiently high, where V is an NX1 column vector
containing the neuron's output, T is an N XN matrix,
I'is an 1 XN row vector.

3. Model of the faulty process

Consider a system described by the following
equations:

X = Ax() + Bu(®) + Ev(D
y(® = Cx(), 5)
where x() €R” is the unmeasurable state vector, u(r)
€R™ is the measurable input vector, y(f) ERP? is the
measurable output vector, v(t)ERY? is an unmeasurable
term representing model uncertainties or input noises
of the system. A, B, E and C are known constant
matrices with appropriate dimensions.

The actuator faults are modelled as

u () = foyu(o), ©)

where u,(f) and u(f) are the actual actuator output and
the requested actuator input, respectively. {f) ER™*™
is a diagonal matrix representing the gains of the
actuators. Under normal operating conditions, the
gains are equal to identity matrices. Under faulty
operating conditions, the gains change, reflecting the
effect of fault. For example, a stuck actuator valve will
cause the corresponding element of f{7) to change from
a valve of unity to a valve of zero. Using (6) in (5), the
dynamics of the faulty process can be modelled as

() = Ax(r) + BROu(@®) + Ev()
0 = Cx(), M

It is assumed that the pair (A, C) is observable and
the sensors are perfectly reliable, and only concern
ourselves with identifying actuator faults. However,
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ignoring the case of sensor faults is only for the sake
of brevity and simplifying the exposition. A detailed
treatment of sensor failures can be found in [4].

4. Fault diagnosis: Identification of the
gains of the actuators

Wang et al. [4] proposed the fault detection and
diagnosis algorithm for linear actuators and sensors,
where an adaptive observer was constructed to
diagnose the faults. Using the augmented error
technique from model reference adaptive control, an
observation error model was formulated and used to
establish an adaptive diagnostic algorithm that
produces the estimates of the gains of the actuators and
the sensors. In the algorithm, the adjustment of the
gains is performed only when the magnitude of the
augmented error is larger than a predetermined value.
The method is relatively simple in the conditions for
convergence and stability of an adaptive system.
Although this method often yields acceptable designs,
it has several drawbacks. For example, it requires a
priori knowledge of the norms of an unmeasurable
term representing model uncertainties or input noises
of the system, which is used to achieve stable adaptive
behaviour. Furthermore, uncertainties directly affect the
adaptive observer and the diagnostic algorithm. So
adaptability depends to a large extent on the degree and
the frequency component of an unmeasurable term.

The mean square-based fault diagnosis is performed
here by the Hopfield network. The main reason behind
this choice is that one can formulate the fault diagnosis
problem as a minimization of a performance index and
then construct a well-defined neural network to
determine a minima that corresponds to the estimated
gains of the actuators. Furthermore, the computation
associated with the proposed fault diagnosis algorithm
can be performed in parallel fashion.

4.1 The monitoring system description free of
unknown inputs

A necessary condition for decoupling an unmeasurable
term w(f) is that rank(CE) = g, (g < p). This means that
to implement an observer that is insensitive to an
unmeasurable term, specific state variables must be
measured or at least appear as a part of the output [5].
Therefore we assume rank(CE) = rank(E). From the
state-space description of (7), y(¢) is obtained as

y@® = CAx(?®) + CBRDu(t) + CEV(f). ®)

Since CE has full column rank, the Moore-Penrose
generalized inverse matrix (CE)* can be obtained by

(CE)* = [(CE)(CE)]'(CE)"ER%*P. ®
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Thus, from (8), we can estimate the effect of an
unmeasurable term v(r) by the following equation:

v(t) = (CE*{ y() — CAx(t) -~ CBAOu(®)}. (10)

Substituting (10) into (7), we arrive at the following
state equation independent of the unmeasurable term:

() = Ax(®) + BROw@ + E(CEY* (1)
¥(t) = Cx(®), (11)

where

A=(,-E(CEy* OA, B=(I,-E(CEy*OB. (12)

4.2 Adaptive observer and its output estimation
error equation

Assuming that the pair (A, C ) is observable, the
adaptive observer is constructed in which unknown
inputs are decoupled:

inlt) = Axa(®) + B fOu@® + ECE* (1)
+ LO® - yu®)
yu(®) = Cxn(0), (13)

where x,()ER" is the state vector of the observer,
() ERP is the observer output vector, f(t) is the
estimate of f{r), L is a pre-specified observer gain
matrix that makes the matrix A —LC stable. Defining
a new state vector as

1) = x.(0) — E(CE)* ¥(0), (14)
leads to the following state-space equations:

0 = Az) + Gy®) + B fou@ as)

X8 = 2(6) + E(CE)*" y(9) (16)

Yult) = Cxu(t), 17)
where

A, =A - LC, G = AECE) + L. (18)

(15) can be rewritten as

20) = A + Gy® + BL, F0ul)
Az + Gy() + BS w®l, o,  (19)

where ﬁ(t) is the ith column vector of matrix f(t) and
u(t) is the ith element of vector u(f). Define the
following state variable filters:

W@ = A,W@) + Gy(r), W(O) = 0 (20)
P(®) = AP(D) + Bu(dl,, PO) =0, 1<i<m,
(21)

where W(t) ER**!, P(f) ER"*™, Then state vector
z(¢9) can be written as

P(t)] 8+ W(o) +exp(A,t )z,
22)

2D =[P(®) Py®) -

A 53 A A
where 6=[ fi" fif -+ fJITER™L, 7, = 2(0).
Therefore the estimated state vector x,(f) can be
written as

xu(t) = [Pr(D)_Po(2) = P16 + W)
+exp( At Yxn, — E(CE)* y,) + E(CE)* y()
(23)

where x,,, = x,(0), y, = ¥(0). The output estimation
error becomes

YO = y(©) — ya0)
= () —[¢7(D8 + CW@) +y,0) + T.01,  (24)

where
9 = CIP(9) Pot) * Pn()] (252)
Ydt) = CE(CE)* y(t) (25b)
3ut) = Cexp(Ayt) (tn, — E(CE}* y,). (25¢)

4.3 The implementation of a mean square algori-
thm based on Hopfield network

The estimates of the gains of the actuators are
obtained using a mean square algorithm that is
implemented by the Hopfield network. Using a mean
square algorithm, the estimates are obtained by
minimizing the following performance index:

J(t) =

STy ar? SN exp(=(t = )/ ),

(26)

where AT s the time interval of interest. Note that an
exponentially decaying window with time constant u
is used in the above energy function. This window has
the effect of emphasing the most current estimation
error and has a gradually fading memory of earlier
errors. Substituting (24) into (26) and simplifying the
resulting expression, the performance index J(f) is
given as

J@&) = L) + L) + H0) @7

where

Jity=——1"  8'0(A)eT(A) [exp(~(t - A)/i)1BdA

2( T)tAT

H= nf, o [OOYCWR W+ T~y )T

[exp(— @ - M) bdar

Jy(t)=—= a th ar DAACWA) + 5, (A + T

* A —(CWD) + 3, + ()]

exp(— ¢t — AYpldA,
where J3(f) is a non-negative value within each
sampling time and has no effect on dJ(r)/d: [2].
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Consequently, the truncated version of (27) becomes
J@O) = Ji(6) + N (28)

Assume that # is constant. Letting the output of
each neuron represent one of the unknown parameters,
that is 8 = V, and by comparing (4) with (28) the
connection weights and biases of the Hopfield network
can be represented as follows:

0= 1L 6 Wlexp (- -Aydd (29)
K= (—’77—)1, o7 [OOD— CWA) = yu(A) = TN

- fexp(=(t ~ AYuyldA, 30)
where 77 is the learning gain. 7(9) is mmXmm time-
varying matrix and I{f) is 1Xmm row vector.
Therefore the total number of neurons, N in Section 2
becomes that of the gains of the actuator to be
estimated, mm. Note that the connection weights, 7(¢)
are symmetric in (29). The outputs of the Hopfield
network with the derived connection weights (29) and
biases (30) converge to the values of the gains of the
actuators.

4.4 Design and implementation procedures of the
proposed algorithm

The design and implementation procedures of
Hopfield network based identification algorithm for
actuator fault diagnosis are summarized as in the
following:

Design procedures of the proposed algorithm

@D Read system matrices A, B, E, C, the time
interval of interest A7, the learning gain 7], and the
time constant g.

® Compute E(CE)*, A and B.

@ Choose L such that the matrix A, is stable,
where A =A - LC, and find A and G.

@ Obtain T(f) and I(f), where T() is the function of
u(t) and I(r) is the function of u(f) and y(o).

Implementation procedures of the proposed algorithm

@ Read parameter 7 in the Hopfield model (Eq.
(1)), parameters A, (1<j<N, N = mm) (Eq. (2)), and
parameters G, (1<j<N) (Eq. (3)). Here the output of
each neuron V; is constrained within the subset of
positive hypercubes G;. Therefore, for any parameter
Ju in the gains of the actuators, G; must be chosen such
that | ;1 < G, where fi(#) = [fi; fu = ful” is the ith
column vector of matrix ), (1 <i<m, 1 <k<m).
Also set initial values of the observer, x,,, and initial
outputs, y,.

@ Obtain u(r) and ().
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® Compute ¢"(1) = C[P,(A) Py(A) -+
Yo(A) and y, ().

@ Find T(r) and I(».

® Compute the states and outputs of the Hopfield
network, where f= [f1 S A L

® If t<tp g0 to @ where t,,,ax is the
implementation ending time. Otherwise terminate the
implementation.

PN, W(A),

5. A numerical example

The above theoretical developments will be applied
to the system [4]:

x(f) = Ax(t) + BAOu@® + Ev(p)

) = Cx(@), 3
where
()= 4-[0.65-245 p_[of p_[1]
xz(t) 03 -0.9 1 1
c=1-350 32)
0 55
5.1 Design of the proposed algorithm
step 1: E(CE)* = —-0.0824 0.1294 , (33)
—0.0824 0.1294
(34)

CE(CEy* = | 0.2882-04529
-0.4529 0.7118

X = (I,-E(CE)* O)A = 0.2491 -1.1032 , (35
~-0.1009 0.4468

0.711

8} . (36)
0.2882

B = (I, - E(CE)* O)B = {-

step 2: The pair (A, C) is observable. For the
system, the observer gains are selected as

“f

which makes (A,= A — LC) stable, with two
eigenvalues, -6 and -1.5. As a result, the following
matrices can be defined:

150
0 -6’

G = AE(CE)* + L=[—

0.4997 —0.2006] , 37

0.0288 1.1721

20=,?1—LC=[‘ (38)

0.3762 _0.3947} (39)

0.5229 0.3957,
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PllA)
step 3: Define Py(1) = with n=2 and
P(2)

m=1. Then

¢T(A) _ —3.5P}1(}L) f = AT<A<t, 40)
5.5P21(A)

where P;(d) is determined from
Pi() = AP(A) + Bu(h), P,(0) =[0 O7.  (41)
step 4: Define W) = W'D with n = 2.

WQ(Z,)

W) = AW + Gy(d), WO) = [0 0], (42
YA = CECE)* y(A), 43)
Vo) = Cexp(AA) (mo—E(CEY* ,). (44)

step 5:

)= —(_A% [} L35P(A)2+(5.5PF (A)2)dA.

45)
K= M%ﬁ_AT[¢(A)u(A)—CW(A) (46)
Va(A)-9,(A))] dA
where equations (45) and (46) stem from
1
J(t):z(—AT,)L_A STP(A)dA C9)

instead of J() of (26).
step 6: From (1) and (3), )= £ = Pu®) =V = V,.

5.2 Simulation results

Computer simulations were carried out, where the
system is subjected to a step input at £ = 0. In simulating
a high-gain limiting case with a sampling period of rm
10[msec], a large gain is used as A, =100. Some data
are given as follows: n=1, 7=100, and x,,=y,=[0
01~ The performance of the proposed fault diagnosis
algorithm depends on the time interval of interest. For
example, if the time interval of interest is big, the
algorithm may not respond to faults fast enough due to
the strong effect of the past data. On the other hand
small time intervals will increase the variance of the
identified gains of actuators. Here the time interval of
interest, AT is chosen asrm 40[msec]. It is assumed that
the healthy actuator has the gain fy=1. A fault is
created as follows:

fu=1

(t<7[sec])
)=
o {0.4

4
(r27[sec]) “8)
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timefsec]

time[sec])

time[sec]
{c) The real state x, and its estimate.

Fig. 1. Fault diagnosis and state estimation with w(f)=
0.2sin30¢

time([sec]

time[sec)

time[sec]
(c) The real state x; and its estimate.

Fig. 2. Fault diagnosis and state estimation with v()
0.2sin10¢
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timefsec}

P r/’-—\
P

- o

..._../ .........

time[sec]
(b) The real state x, and its estimate.

. ]
- e .

........... jporr

© @

timefsec)
(c) The real state x, and its estimate.

Fig. 3. Fault diagnosis and state estimation with v(f) = 2sin30¢

! o

time[sec]

(a) Fault diagnosis for 7(?).

time[sec]

e S
W’

time[sec)
(c) The real state x, and its estimate.
Fig. 4. Fault diagnosis and state estimation with v(¢) = 2sin10¢
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where f(t) = fi(?) = f1,(®) with m = 1. The output of a
neuron evolves within the prescribed hypercube where
the size of the hypercube is chosen as G, = 2, that is
twice of |fyl. Moreover, a zero initial state of the
neuron is assigned. Without a priori knowledge about
uncertainties four different uncertainties are assumed
in the simulation: v(f) = 0.2sin(30¢), v(¢) = 0.2sin(10z),
v(f) = 25in(30¢) and v(#) = 2sin(107). Figs. 1-4 represent
the application results of the proposed algorithm. In
each figure, (a) is the estimate of the gain of an
actuator, f{t), and (b) and (c) show the estimated states
by the adaptive observer. It is seen from these figures
that both the parameter f{r) and two states are
estimated quite well regardless of the magnitude and
the frequency component of an unmeasurable term.
When the system dynamics changes, identified gains
go through a transient period and this period can be
used to detect faults.

6. Conclusions

A technique for programming of the Hopfield
network for identification of the gains of the actuators
was developed. In this technique, the Hopfield
network was used to implement a least-squares
estimation for the gains of the actuators. When the
system dynamics changes, identified gains go through
a transient period and this period can be used to detect
faults. It has been shown that the adaptive diagnostic
algorithm can give the desired performance for fault
diagnosis through its application to a second-order
system.
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