• Title/Summary/Keyword: Unknown Data Association

Search Result 125, Processing Time 0.026 seconds

A hybrid intrusion detection system based on CBA and OCSVM for unknown threat detection (알려지지 않은 위협 탐지를 위한 CBA와 OCSVM 기반 하이브리드 침입 탐지 시스템)

  • Shin, Gun-Yoon;Kim, Dong-Wook;Yun, Jiyoung;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.27-35
    • /
    • 2021
  • With the development of the Internet, various IT technologies such as IoT, Cloud, etc. have been developed, and various systems have been built in countries and companies. Because these systems generate and share vast amounts of data, they needed a variety of systems that could detect threats to protect the critical data contained in the system, which has been actively studied to date. Typical techniques include anomaly detection and misuse detection, and these techniques detect threats that are known or exhibit behavior different from normal. However, as IT technology advances, so do technologies that threaten systems, and these methods of detection. Advanced Persistent Threat (APT) attacks national or companies systems to steal important information and perform attacks such as system down. These threats apply previously unknown malware and attack technologies. Therefore, in this paper, we propose a hybrid intrusion detection system that combines anomaly detection and misuse detection to detect unknown threats. Two detection techniques have been applied to enable the detection of known and unknown threats, and by applying machine learning, more accurate threat detection is possible. In misuse detection, we applied Classification based on Association Rule(CBA) to generate rules for known threats, and in anomaly detection, we used One-Class SVM(OCSVM) to detect unknown threats. Experiments show that unknown threat detection accuracy is about 94%, and we confirm that unknown threats can be detected.

A Practical FastSLAM Implementation Method using an Infrared Camera for Indoor Environments (실내 환경에서 Infrared 카메라를 이용한 실용적 FastSLAM 구현 방법)

  • Zhang, Hairong;Lee, Heon-Cheol;Lee, Beom-Hee
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.305-311
    • /
    • 2009
  • FastSLAM is a factored solution to SLAM problem using a Rao-Blackwellized particle filter. In this paper, we propose a practical FastSLAM implementation method using an infrared camera for indoor environments. The infrared camera is equipped on a Pioneer3 robot and looks upward direction to the ceiling which has infrared tags with the same height. The infrared tags are detected with theinfrared camera as measurements, and the Nearest Neighbor method is used to solve the unknown data association problem. The global map is successfully built and the robot pose is predicted in real time by the FastSLAM2.0 algorithm. The experiment result shows the accuracy and robustness of the proposed method in practical indoor environment.

  • PDF

Interpretation of Data Mining Prediction Model Using Decision Tree

  • Kang, Hyuncheol;Han, Sang-Tae;Choi, Jong-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.937-943
    • /
    • 2000
  • Data mining usually deal with undesigned massive data containing many variables for which their characteristics and association rules are unknown, therefore it is actually not easy to interpret the results of analysis. In this paper, it is shown that decision tree can be very useful in interpreting data mining prediction model using two real examples.

  • PDF

Optimizing of Intrusion Detection Algorithm Performance and The development of Evaluation Methodology (침입탐지 알고리즘 성능 최적화 및 평가 방법론 개발)

  • Shin, Dae Cheol;Kim, Hong Yoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.125-137
    • /
    • 2012
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. For such reason, lots of intrusion detection system has been developed. Intrusion detection system has abilities to detect abnormal behavior and unknown intrusions also it can detect intrusions by using patterns studied from various penetration methods. Various algorithms are studying now such as the statistical method for detecting abnormal behavior, extracting abnormal behavior, and developing patterns that can be expected. Etc. This study using clustering of data mining and association rule analyzes detecting areas based on two models and helps design detection system which detecting abnormal behavior, unknown attack, misuse attack in a large network.

Association measure of doubly interval censored data using a Kendall's 𝜏 estimator

  • Kang, Seo-Hyun;Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.151-159
    • /
    • 2021
  • In this article, our interest is to estimate the association between consecutive gap times which are subject to interval censoring. Such data are referred as doubly interval censored data (Sun, 2006). In a context of serial event, an induced dependent censoring frequently occurs, resulting in biased estimates. In this study, our goal is to propose a Kendall's 𝜏 based association measure for doubly interval censored data. For adjusting the impact of induced dependent censoring, the inverse probability censoring weighting (IPCW) technique is implemented. Furthermore, a multiple imputation technique is applied to recover unknown failure times owing to interval censoring. Simulation studies demonstrate that the suggested association estimator performs well with moderate sample sizes. The proposed method is applied to a dataset of children's dental records.

Data Association of Robot Localization and Mapping Using Partial Compatibility Test (Partial Compatibility Test 를 이용한 로봇의 위치 추정 및 매핑의 Data Association)

  • Yan, Rui Jun;Choi, Youn Sung;Wu, Jing;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.129-138
    • /
    • 2016
  • This paper presents a natural corners-based SLAM (Simultaneous Localization and Mapping) with a robust data association algorithm in a real unknown environment. Corners are extracted from raw laser sensor data, which are chosen as landmarks for correcting the pose of mobile robot and building the map. In the proposed data association method, the extracted corners in every step are separated into several groups with small numbers of corners. In each group, local best matching vector between new corners and stored ones is found by joint compatibility, while nearest feature for every new corner is checked by individual compatibility. All these groups with local best matching vector and nearest feature candidate of each new corner are combined by partial compatibility with linear matching time. Finally, SLAM experiment results in an indoor environment based on the extracted corners show good robustness and low computation complexity of the proposed algorithms in comparison with existing methods.

Case Studies in EFL Reading: Perceptions, Experiences, and Strategies

  • Chin, Cheong-Sook
    • English Language & Literature Teaching
    • /
    • v.15 no.4
    • /
    • pp.1-22
    • /
    • 2009
  • This case study aimed to explore proficient EFL readers' perceptions and experiences about reading tasks and how those perceptions and experiences influence their reading processing behaviors, and to examine how the cultural background of a text affects their reading strategies and comprehension. Three college students who were non-English majors participated in this study. Three data sources were employed: questionnaires, interviews, and think-alouds. The results showed that: (1) the participants emphasized comprehension as the goal of reading and considered themselves good EFL readers; (2) their reading purposes were closely associated with personal pursuits; (3) they preferred to read materials that deal with areas of interest but did not try to take a risk in terms of level of difficulty and/or length; (4) they implemented a multistrategic approach to reading in that the majority of their strategy use was in conjunction with their concern about meaning construction; (5) they were able to develop useful understandings of unknown vocabulary; and (6) their clear awareness of the cultural background presupposed in the text helped them invoke prior knowledge and reduce unknown vocabulary hindrances which contributed to comprehension. Pedagogical implications for EFL reading instruction are provided.

  • PDF

A Development of Unknown Intrusion Detection System with SVM (SVM을 통한 미확인 침입탐지 시스템 개발)

  • Kim, Seok-Tae;Han, In-Gyu;Lee, Chang-Yong;Kho, Jeong-Ho;Lee, Do-Won;Oh, Jeong-Min;Bang, Cheol-Soo;Lee, Geuk
    • Convergence Security Journal
    • /
    • v.7 no.4
    • /
    • pp.23-28
    • /
    • 2007
  • In this research, we suggest the unknown intrusion detection system with SVM(Support Vector Machines). At the system, at first, collected training-packets are processed through packet image creating module. And then, it is studied by the SVM module. Finally, the studied SVM module classifies the test-data unsing test-packet-image. This system's stability and efficient characteristic of security is far superior than the existing it.

  • PDF

Parallel Data Mining with Distributed Frequent Pattern Trees (분산형 FP트리를 활용한 병렬 데이터 마이닝)

  • 조두산;김동승
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2561-2564
    • /
    • 2003
  • Data mining is an effective method of the discovery of useful information such as rules and previously unknown patterns existing in large databases. The discovery of association rules is an important data mining problem. We have developed a new parallel mining called Distributed Frequent Pattern Tree (abbreviated by DFPT) algorithm on a distributed shared nothing parallel system to detect association rules. DFPT algorithm is devised for parallel execution of the FP-growth algorithm. It needs only two full disk data scanning of the database by eliminating the need for generating the candidate items. We have achieved good workload balancing throughout the mining process by distributing the work equally to all processors. We implemented the algorithm on a PC cluster system, and observed that the algorithm outperformed the Improved Count Distribution scheme.

  • PDF

A Case Study on College EFL Readers: Awareness, Experiences, and Processes

  • Chin, Cheongsook
    • English Language & Literature Teaching
    • /
    • v.17 no.3
    • /
    • pp.1-25
    • /
    • 2011
  • This research primarily aimed to investigate proficient and less proficient EFL readers' awareness and experiences about learning to read and reading in English. The secondary purpose was to explore the participants' reading strategies, and to discover how the genres of English texts influence their reading processing behaviors. The participants consisted of four college students in engineering aged 21-25 years. Three data sources were employed: questionnaires, interviews, and think-alouds. The findings revealed that: (1) the proficient EFL readers judged themselves to be good readers, while the less proficient EFL readers judged themselves to be fair readers; (2) unknown vocabulary was perceived to be the major impediment to reading comprehension; the think-aloud data, however, demonstrated that unknown vocabulary did not significantly interfere with their reading comprehension; (3) regardless of the genre of the text, the participants employed similar reading strategies; (4) the participants were more likely to tolerate ambiguity and predict the content when reading the narrative text than the expository text; (5) there was no set of strategies that distinguished proficient EFL readers from less proficient EFL readers; and (6) when identifying problems, the proficient EFL readers used fix-up strategies more effectively and were better able to provide satisfactory solutions than their counterparts. Pedagogical implications for EFL reading instruction are discussed.

  • PDF