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Abstract FastSLAM is a factored solution to SLAM problem using a Rao-Blackwellized particle filter. In 
this paper, we propose a practical FastSLAM implementation method using an infrared camera for indoor 
environments. The infrared camera is equipped on a Pioneer3 robot and looks upward direction to the 
ceiling which has infrared tags with the same height. The infrared tags are detected with theinfrared camera 
as measurements, and the Nearest Neighbor method is used to solve the unknown data association 
problem. The global map is successfully built and the robot pose is predicted in real time by the 
FastSLAM2.0 algorithm. The experiment result shows the accuracy and robustness of the proposed method 
in practical indoor environment.
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1. Introduction1)

The problem of Simultaneous Localization and 
Mapping, also known as SLAM, is one of the main topics 
in the robotics. The goal of SLAM is to construct a map 
of the environment and the path taken by the robot. 
SLAM is considered as a key prerequisite for truly 
autonomous robots. FastSLAM, which uses a Rao- 
Blackwellized particle filter, factors the SLAM posterior 
into a product of a robot path posterior and landmark 
posterior conditioned on the robot path estimate[1]. The 
factorization allows advantages to FastSLAM over 
Extended Kalman Filter SLAM (EKF-SLAM) on two 
aspects: computation complexity and robust data 
association. 
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FastSLAM experiment is usually implemented using 
odometry sensor for motion input and observation sensors 
such as sonar, laser and camera. More recently, Davison[12] 
proposed a vision-based real-time SLAM, called 
Mono-SLAM, which employs only a single camera 
without odometry information. It increases localization 
accuracy by integrating camera velocity into optimization 
variables. However, it needs an initial manual calibration 
process to obtain the scale information. In [4], Jeong et al. 
proposed a CV-SLAM (Ceiling Vision–based Simultaneous 
Localization and Mapping) technique using a single ceiling 
vision sensor, which was suitable for system that demands 
very high localization accuracy. A single camera looking 
upward direction was mounted on the robot, and salient 
image features were detected and tracked through the 
image sequence. Compared with the conventional frontal 
view systems, their method had advantage in tracking, 
since it involved only rotation and affine transform 
without scale change. 

However, a common camera cannot ensure reliable 
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performance when illumination condition is not good, e.g. 
in a dark room. In order to solve this problem, this paper 
proposes to use an infrared camera instead of a common 
camera as the observation sensor in FastSLAM 
experiment. The proposed observation method can not 
only overcome the bad illumination condition, but also can 
be implemented much easier. A single infrared camera 
looking upward direction was mounted on the Pineer3 
robot, and IR tags on the ceiling of an Intelligent Space 
were detected by the infrared camera. The proposed 
method used the Nearest Neighbor method to solve the 
unknown data association problem and was implemented 
using Visual C++ for the real-time processing. The results 
of the proposed method showed lower errors in the robot 
pose and the map built by the robot.

The layout of this paper is as follows. Section 2 
describes FastSLAM with unknown data association. In 
Section 3, the infrared camera is proposed, and its 
measurement model is built. Section 4 shows the practical 
indoor experiments of FastSLAM with an infrared camera, 
and their results arecompared with global vision result. At 
last, Section 5 gives conclusion.

2. FastSLAM with Unknown Data Association

2.1 FastSLAM2.0 Algorithm

FastSLAM computes the posterior over maps and robot 
path as follows:
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This factorization states that the SLAM posterior can be 
separated into a product of robot path posterior 

1: 1: 1: 1:( | , , )t t t tp s z u n , and N landmark posteriors conditioned 

on the robot’s path. Here s1:t means robot path, Θ  means 
the set of all n landmark positions, z1:t means sensor 
observation, u1:t means robot control input, n1:t means the 
data association of observation[5, 10, 11].

In this paper, we implement the FastSLAM2.0 
algorithm, which draw a new pose stfrom a motion model 
that includes the most recent observation zt.

[ ] [ ]
1: 1 1: 1: 1:( | , , , )m m

t t t t t ts p s s u z n−= (2)

where [ ]
1: 1

m
ts −  is the path up to time t-1 attached to the 

m-th particle. Motion andmeasurement models are given as 
nonlinear function with Gaussian noise[9]:

1 1( | , ) ( , )t t t t t tp s u s h s u δ− −= +  (3)

( | , , ) ( , )
tt t t t n tp z s n g s θ εΘ = +  (4)

Here g and h are nonlinear functions, and tε  and tδ  

are independent Gaussian noise. A particle at time t, [ ]k
tS  

in FastSLAM is denoted by

[ ] [ ] [ ] [ ] [ ] [ ]
1, 1, , ,, , , , ,k k k k k k

t t t t N t N tS s μ μ= Σ ΣK (5)

where the [k] indicates the index of the particle, and 
[ ]k
tS  is the pose estimate of the robot at time t. Only the 

most recent pose [ ]k
tS  is used in FastSLAM, so a particle 

keeps only the most recent pose. [ ] [ ]
, ,,k k

n t n tμ Σ  are mean and 

covariance of the Gaussian, representing the n-th feature 
location relative to the k-th particle, respectively. 

Altogether, these elements form the k-th particle, [ ]k
tS , and 

there are total M particles and N feature estimates in a 
particle set. The basic steps of the FastSLAM 2.0 
algorithm, which is the latest version, are as follows[13]:

• Step 1: Sampling. 
[ ] [ ]

1~ ( | , , , )k k t t t
t t ts p s s z u n−

• Step 2: Measurement update. For each observed 
feature identify the correspondence j for the 

measurement i
tz  and incorporate the measurement i

tz  

into the corresponding EKF by updating the mean 
[ ]

,
k
j tu  and covariance [ ]

,
k
j tΣ .

• Step 3: Importance weight. Calculate the importance 

weight [ ]kw  for the k-th particle.

• Step 4: Resampling. Sample M particles with replace-
ment, where each particle is sampled with a 

probability proportional to [ ]kw .
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Feature ID i=0

Compute the estimated 
landmark position of time t

Find the nearest neighbor 
with the saved landmark 

positions of time t-1

Distance between nearest 
neighbor < THRESHOLD

Match the two features of nearest neighbor

Yes

No

Feature ID i++

i > current total number of features

Yes

Return IDs of the associaiton

No

Fig. 1. Nearest Neighbor data association algorithm

2.2 Unknown Data Association

Data association is one of the critical issues for 
practical SLAM implementations. In practice, the data 
association is rarely known. Two factors contribute to data 
association uncertainty in the SLAM posterior: 
measurement noise and motion noise. As measurement 
noise increases, the distributions of possible observations 
of every landmark become more uncertain. If measurement 
noise is sufficiently high, the distributions of observations 
from nearby landmarks will begin to overlap substantially. 
This overlap leads to ambiguity in the identity of the 
landmarks. This kind of data association ambiguity caused 
by measurement is called as measurement ambiguity. In 
order to distinguish each feature and solve the data 
association problem, we implement the Nearest Neighbor 
method, which is easy and robust in our system as the 
tags are sparse. Nearest Neighbor data association method 
is among the simplest of the data association methods. 
The basic idea of NN algorithm is to match the two 
features with the shortest distance of time-adjacent 
measurements. This algorithm can be applied when the 
feature distribution is sparse and not very complicate. Fig. 
1 in the next page demonstrates the algorithm of Nearest 
Neighbor data association method. However, the NN data 
association method may be not stable when the data 
association problem is very complicate. As the data 

association error can induce significant errors in the map, 
we may implement or develop some more robust data 
association method to solve this problem.

3. Observation using Infrared Camera

The infrared technique is widely used for night vision 
systems. In this paper, an infrared band-pass filter is 
covered on a common camera, which transmits only 
infrared band by filtering out visible band. The infrared 
tags on the ceiling are well discriminated as white blobs 
in the image. As is well known in vision community, it is 
difficult to robustly locate particular patterns from images 
in varying illumination condition[2, 3]. This infrared 
band-pass filtering solution makes the observation much 
simpler, and enables this kind of observation at any 
illumination condition. 

Fig. 2 demonstrates the effect of infrared band-pass 
filter. Fig. 2(a) was captured with a normal camera, Fig. 
2(b) was the camera image with calibration, and Fig. 2(c) 
was captured with the same camera but with an infrared 
band-pass filter. The infrared tags on the ceiling are easily 
recognized aswhite blobs in the image. In order to 
estimate the position of the IR tags in the image plane, let 
I(x,y) be an image plane. First, the image is converted into 
a binaryimage by some threshold got by experiments. The 
white blobs of IR tags are then located by connected 
component analysis. Let bi be the i-th blob, for i = 1,…,n. 
Finally, the mass center of each blob, (xi, yi), is given by

( , )

( , )

1 ( , )

1 ( , )

i
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i
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i
x y bi
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∈

∈
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∑
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where ( , )
i

i
b

s I x y=∑ , for i = 1, …, n.

Before identifying the infrared spots on the image of 
the infrared camera, the calibration of camera is a 
necessary step. In this paper, the established calibration 
method from Bouguet’s Matlab source was implemented[6, 7].

In the next step, the image projection model will be 
built up. Projection model is the projection function that 
projects a 3D landmark to the infrared camera observation. 
Our observation system has an infrared camera positioned 
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(a) Image before calibration

(b) Image after calibration

(c) Image captured by the same camera with infrared band-pass 

filter after calibration.

Fig. 2. Observation sample images of infrared tags

Fig. 3. Measurement model: projection from infrared tags onto image 

plane

Common Camera

Calibration

Infrared Band-pass Filter

Threshold Selection

Image Projection

Fig. 4. General scheme of proposed observation method using infrared 

camera

at the center of the robot, aligned with the robot 
orientation. Fig. 3 demonstrates the measurement model 
which projects from the infrared tags on the ceiling onto 
image plane. Fig. 4 describesthe general scheme of the 
proposed observation method using infrared camera.

For the measurement model, we mount the infrared 
camera at the center of the robot, looking upward 
direction. The infrared tags are observed with the 

following observation model. 
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where , , ,[ ]t t x t y ts s s s θ=   donates robot pose, 

, ,[ ]nt nt x nt yθ θ θ=   donates current landmark position and fy 

denotes the focal length of the camera, and hz denotes the 
height from the robot to the ceiling. The Jacobians are 
computed as follows:
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Fig. 5. Intelligent space

Fig. 7. Landmark positions by FastSLAM compared with real landmark 

positions
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4. Experiments

4.1 Intelligent Space with Infrared Tags

The Intelligent Space is illustrated in Fig. 5. There are 
20 infrared tags (red) and 4 global cameras (green) with 
the same height hz = 2145mm on the ceiling. This is a 
very important assumption of our experiment. The P3DX 
mobilerobot is moving on the floor for a close loop with 
an infrared camera equipped at the center of it. The 
experiment is done in real-time with Visual C++ program.

In the real environment, the floor is flat, that is to say, 
the direction camera would keep perpendicular to the 
floor. However, if the floor is not even, e.g. in outdoor 
environment, this kind of experiment will probably have 
bad performance.

4.2 Experimental Results

In the Intelligent Space mentioned in Fig. 5, we did the 
FastSLAM experiment for more than 10 times. First, we 
turn off the fluorescent lights in the room, which are not 
with the same height as infrared tags on the ceiling and 
may lead to incorrect matching of the measurement. And 
then, let the Pioneer3 robot go around the room for many 
closing loops. One of these experiments is demonstrated in 
the Fig. 6, where the red dots denote the landmarks 
(infrared tags) on the ceiling, the blue circle denote the 
current pose of robot by estimation, and the blue polyline 
denotes the estimated robot trajectory.

Fig. 6. FastSLAM experiment result

4.3 Analysis of the Results

4.3.1 Position error of landmarks
Fig. 7 shows the mapping result by FastSLAM2.0 

compared with the real position of tags. The estimated 
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Average (mm) Standard Deviation (STD)

50.7 34.8

Table 1. Landmark position error by FastSLAM

Position error by odometry Position error by FastSLAM

Average (mm) STD (mm) Average (mm) STD (mm)

149.1 29.1 26.1 15.5

Table 2. Robot position errors comparison between odometry and 

FastSLAM

Fig. 8. Robot position error comparison between odometry and 

FastSLAM

positions of landmarks are represented by red crosses and 
the real positions with blue circle. Table 1 shows the 
average value and standard deviation value of landmark 
position error by FastSLAM.

4.3.2 Position error of the robot
The robot pose can be compared with result of global 

vision system. Table 2 shows the average values and 
standard deviation values of robot position error by raw 
odometry and FastSLAM. Fig. 8 also shows the average 
values and standard deviation values of robot position 
error by raw odometry and FastSLAM. The experiment 
results of the robot position show that the estimated 
position by FastSLAM was much more accurate than the 
raw odometry result. This is helpful to localize the robot 
for other tasks.

5. Conclusion

In this paper, a novel method to implement FastSLAM 
algorithm was proposed using infrared camera with 
unknown data association. The proposed method has 
several advantages over other methods with a common 
camera as follows: 

Regardless of illumination conditions —The proposed 
method can overcome bad illumination conditions such as 
too dark or too bright illumination, shiny sunlight, and 
highly reflective objects, because the IR camera observes 
only IR light of the environment. Even if in totally dark 
environment, the proposed IR camera method can 
successfully perform FastSLAM by observing IR tags 
consistently.

Less processing time —The proposed method can make 
the complicated image processing much simpler. The 
method converts the raw image after undistortion into a 
binary image, and then searches the bulb with high value 
(white color) over some threshold by experiment. 
Therefore, the method ensures less processing time for 
observation, because the simpler image processing requires 
less total processing time.

Finally, the performance of the proposed method was 
verified by reducing the errors in both the robot position 
and the map built by the robot compared with raw 
odometry data. As a future work, we will deal with more 
realistic environment, e.g. with only fluorescent lights 
instead of artificial infrared tags, or with both fluorescent 
lights and infrared tags.
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