• Title/Summary/Keyword: Universal adhesive

Search Result 237, Processing Time 0.025 seconds

Comparison of the bonding strengths of second- and third-generation light-emitting diode light-curing units

  • Lee, Hee-Min;Kim, Sang-Cheol;Kang, Kyung-Hwa;Chang, Na-Young
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.364-371
    • /
    • 2016
  • Objective: With the introduction of third-generation light-emitting diodes (LEDs) in dental practice, it is necessary to compare their bracket-bonding effects, safety, and efficacy with those of the second-generation units. Methods: In this study, 80 extracted human premolars were randomly divided into eight groups of 10 samples each. Metal or polycrystalline ceramic brackets were bonded on the teeth using second- or third-generation LED light-curing units (LCUs), according to the manufacturers' instructions. The shear bond strengths were measured using the universal testing machine, and the adhesive remnant index (ARI) was scored by assessing the residual resin on the surfaces of debonded teeth using a scanning electron microscope. In addition, curing times were also measured. Results: The shear bond strengths in all experimental groups were higher than the acceptable clinical shear bond strengths, regardless of the curing unit used. In both LED LCU groups, all ceramic bracket groups showed significantly higher shear bond strengths than did the metal bracket groups except the plasma emulation group which showed no significant difference. When comparing units within the same bracket type, no differences in shear bond strength were observed between the second- and third-generation unit groups. Additionally, no significant differences were observed among the groups for the ARI. Conclusions: The bracket-bonding effects and ARIs of second- and third-generation LED LCUs showed few differences, and most were without statistical significance; however, the curing time was shorter for the second-generation unit.

Comparative study of the shear bond strength of various veneering materials on grade II commercially pure titanium

  • Lee, Eun-Young;Jun, Sul-Gi;Wright, Robert F.;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • PURPOSE. To compare the shear bond strength of various veneering materials to grade II commercially pure titanium (CP-Ti). MATERIALS AND METHODS. Thirty specimens of CP-Ti disc with 9 mm diameter and 10 mm height were divided into three experimental groups. Each group was bonded to heat-polymerized acrylic resin (Lucitone 199), porcelain (Triceram), and indirect composite (Sinfony) with 7 mm diameter and 2 mm height. For the control group (n=10), Lucitone 199 were applied on type IV gold alloy castings. All samples were thermocycled for 5000 cycles in $5-55^{\circ}C$ water. The maximum shear bond strength (MPa) was measured with a Universal Testing Machine. After the shear bond strength test, the failure mode was assessed with an optic microscope and a scanning electron microscope. Statistical analysis was carried out with a Kruskal-Wallis Test and Mann-Whitney Test. RESULTS. The mean shear bond strength and standard deviations for experimental groups were as follows: Ti-Lucitone 199 ($12.11{\pm}4.44$ MPa); Ti-Triceram ($11.09{\pm}1.66$ MPa); Ti-Sinfony ($4.32{\pm}0.64$ MPa). All of these experimental groups showed lower shear bond strength than the control group ($16.14{\pm}1.89$ MPa). However, there was no statistically significant difference between the Ti-Lucitone 199 group and the control group, and the Ti-Lucitone 199 group and the Ti-Triceram group. Most of the failure patterns in all experimental groups were adhesive failures. CONCLUSION. The shear bond strength of veneering materials such as heat-polymerized acrylic resin, porcelain, and indirect composite to CP-Ti was compatible to that of heatpolymerized acrylic resin to cast gold alloy.

A comparative evaluation of fracture resistance of endodontically treated teeth restored with different post core systems - an in-vitro study

  • Makade, Chetana S.;Meshram, Ganesh K.;Warhadpande, Manjusha;Patil, Pravinkumar G.
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • PURPOSE. To compare the fracture resistance and the mode of failure of endodontically treated teeth restored with different post-core systems. MATERIALS AND METHODS. Root canal treatment was performed on 40 maxillary incisors and the samples were divided into four groups of 10 each. For three experimental groups post space preparation was done and teeth were restored with cast post-core (Group B), stainless steel post with composite core (Group C) and glass fiber post with composite core using adhesive resin cement (Group D). Control group (A) samples were selected with intact coronal structure. All the samples were prepared for ideal abutment preparation. All the samples were subjected to a load of 0.5 mm/min at $130^{circ}$.until fracture occurred using the universal testing machine. The fracture resistance was measured and the data were analyzed statistically. The fracture above the embedded resin was considered to be favorable and the fracture below the level was considered as unfavorable. The statistical analysis of fracture resistance between different groups was carried out with t-test. For the mode of failure the statistical analysis was carried out by Kruskal-Wallis test and Chi-Square test. RESULTS. For experimental group Vs control group the fracture resistance values showed significant differences (P<.05). For the mode of failure the chi-square value is 16.1610, which means highly significant (P=.0009) statistically. CONCLUSION. Endodontically treated teeth without post core system showed the least fracture resistance demonstrating the need to reinforce the tooth. Stainless steel post with composite core showed the highest fracture resistance among all the experimental groups. Teeth restored with the Glass fiber post showed the most favorable fractures making them more amenable to the re-treatment.

Push-out bond strengths of fiber-reinforced composite posts with various resin cements according to the root level

  • Chang, Hoon-Sang;Noh, Young-Sin;Lee, Yoon;Min, Kyung-San;Bae, Ji-Myung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.278-286
    • /
    • 2013
  • PURPOSE. The aim of this study was to determine whether the push-out bond strengths between the radicular dentin and fiber reinforced-composite (FRC) posts with various resin cements decreased or not, according to the coronal, middle or apical level of the root. MATERIALS AND METHODS. FRC posts were cemented with one of five resin cement groups (RelyX Unicem: Uni, Contax with activator & LuxaCore-Dual: LuA, Contax & LuxaCore-Dual: Lu, Panavia F 2.0: PA, Super-Bond C&B: SB) into extracted human mandibular premolars. The roots were sliced into discs at the coronal, middle and apical levels. Push-out bond strength tests were performed with a universal testing machine at a crosshead speed of 0.5 mm/min, and the failure aspect was analyzed. RESULTS. There were no significant differences (P>.05) in the bond strengths of the different resin cements at the coronal level, but there were significant differences in the bond strengths at the middle and apical levels (P<.05). Only the Uni and LuA cements did not show any significant decrease in their bond strengths at all the root levels (P>.05); all other groups had a significant decrease in bond strength at the middle or apical level (P<.05). The failure aspect was dominantly cohesive at the coronal level of all resin cements (P<.05), whereas it was dominantly adhesive at the apical level. CONCLUSION. All resin cement groups showed decreases in bond strengths at the middle or apical level except LuA and Uni.

A STUDY ON THE TENSILE STRENGTH BETWEEN METAL DENTURE BASE AND RELINING MATERIALS (의치 재이장 재료와 금속의치상간의 결합력에 관한 연구)

  • Lee, Joon-Seok;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • Relining and rebasing are essential for long-term success and oral health in removable prosthodontics. Major features of failures between metal base and relining resins are adhesive failure due to lack of chemical bonding. The purpose of this study was to find a better metal primer and metal surface treatment method that enhance the bonding strength with relining resin materials. The surfaces of ticonium alloys were treated with $25{\mu}m$ sandblasting (Group A), stone wheel(Group B), stone wheel and EZ oxisor(Group C), $75{\mu}m$ sandblasting(Group D) and EZ oxisor application after $75{\mu}m$ sandblasting(Group E). They were subdivided into no primer application (Group I), MR bond application(Group II) and Metafast bonding liner (Group III). Then specimens were completed though being bonded with relining resins. The specimens were stored in $38^{\circ}C$ water for 48 hours and tensile strength was measured using the universal testing machine. The results were as follows, 1. Primer application groups showed higher bond strength than no primer application group(p<0.05). 2. In comparison with primer application groups, MR bond group showed higher bond strength than Meta fast bonding liner application group(p<0.05). 3. In comparison with surface treatment methods, Bond strengths of group A and B were significantly different with group C, D, and E, and group C were significantly different with group D, and E in no primer application group()(0.05). In primer application groups, group A, B, C were significantly different with group D and E(p<0.05). According to results of this study, Metal primer application and metal surface roughening were considered to be advantageous for relining of metal base dentures.

  • PDF

THE STUDY ON THE PHYSICAL PROPERTY OF THE PERMANENT SOFT DENTURE LINERS (영구 연성 의치상 이장재의 물리적 성질에 관한 연구)

  • Kim, Yeon-Mi;Bae, Jeong-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.809-818
    • /
    • 1999
  • This study was performed to evaluate the tensile bond strength and modulus of elasticity of three permanent soft denture liners (Molloplast $B^{(R)}$, Ufi Gel $C^{(R)},\;Tokuyama^{(R)}$) before and after thermocycling. And their water sorption were also evaluated. Each soft denture liner was bonded to PMMA denture base resin blocks and the tensile bond strength and modulus of elasticity were measured by using universal testing machine. For the water sorption, weight measured after immersion of sea denture liners in $37{\pm}1^{\circ}C$ water bath for 4 weeks. The results were as follows : 1. Molloplast $B^{(R)}$ had the highest tensile bond strength, while Tokuyama had the lowest tensile bond strength. There was no significant difference between $Tokuyama^{(R)}$ and Molloplast $B^{(R)}$ in the both nonthermocycling and thermocycling. There was significant difference in tensile strength of $Tokuyama^{(R)}$ before and after thermocycling(p<0.05). 2. For the modulus of elasticity, there was no significant difference between Ufi Gel $C^{(R)}\;and\;Tokuyama^{(R)}$ in the both nonthermocycling and thermocycling. There was significant difference in modulus of elasticity of $Tokuyama^{(R)}$ before and after thermocycling(p<0.05). 3 The failure modes of Molloplast $B^{(R)}$ and Ufi Gel $C^{(R)}$ were mainley adhesive type and that of $Tokuyama^{(R)}$ was mainly mixed type in case of nonthermocycling and cohesive type after thermocycling. 4. The water sorption of each soft liners was within ${\pm}2%$ in times (p<0.05) but. there was no significant difference among the soft liners in times.

  • PDF

EFFECT OF SALIVARY CONTAMINATION OF TEETH ON MICROTENSILE BOND STRENGTH OF VAR10US DENTIN BONDING SYSTEMS. (타액에 의한 오염이 상아질 접착제의 미세전단결합강도에 미치는 영향)

  • Choi, Kyoung-Kyu;Ryu, Gil-Joo
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.3
    • /
    • pp.203-208
    • /
    • 2003
  • The purpose of this study was to evaluate the effect of salivary contamination of teeth on bonding efficacy of self-priming and self-etching DBSs. The materials used were Single Bond(SB, self-priming system, 3M), Unifil Bond(UB, self-etching system, GC), and Scotchbond Multi-Purpose Plus(SM, 3M) as control. Forty five human molars randomly allocated to three groups as dentin bonding systems tested and embedded in epoxy resin. Then the specimens were wet-ground to expose flat buccal enamel surface or flat occlusal dentin surface and cut bucco-lingually to form two halves with slow speed diamond saw. One of them was used under non-contamination, other under contamination with saliva. The bonding procedure was according to the manufacturer's directions and resin composite(Z-100, 3M Dental Products, St. Paul, MN) was built-up on the bonded surface 5mm high. The specimens were ground carefully at the enamel-composite interface with fine finishing round diamond bur to create an hour-glass shape yielding bonded surface areas of $1.5{\pm}0.1\textrm{mm}^2$. The specimens were bonded to the modified microtensile testing apparatus with cyanoacrylate, attached to the universal testing machine and stressed in tension at a CHS of 1mm/min. The tensile force at failure was recorded and converted to a tensile stress(MPa). Mean values and standard deviations of the bond strength are listed in table. One-way ANOVA was used to determine significant difference at the 95% level. The bond strength of SBMP and SB were not affected by salivary contamination, but that of UB was significantly affected by salivary contamination. These results indicate that DBSs with total etch technique seems less likely affected by salivary contamination in bonding procedure.

Effect of core design on fracture resistance of zirconia-lithium disilicate anterior bilayered crowns

  • Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.181-188
    • /
    • 2020
  • PURPOSE. The effect of core design on the fracture resistance of zirconia-lithium disilicate (LS2) bilayered crowns for anterior teeth is evaluated by comparing with that of metal-ceramic crowns. MATERIALS AND METHODS. Forty customized titanium abutments for maxillary central incisor were prepared. Each group of 10 units was constructed using the same veneer form of designs A and B, which covered labial surface to approximately one third of the incisal and cervical palatal surface, respectively. LS2 pressed-on-zirconia (POZ) and porcelain-fused-to-metal (PFM) crowns were divided into "POZ_A," "POZ_B," "PFM_A," and "PFM_B" groups, and 6000 thermal cycles (5/55 ℃) were performed after 24 h storage in distilled water at 37 ℃. All specimens were prepared using a single type of self-adhesive resin cement. The fracture resistance was measured using a universal testing machine. Failure mode and elemental analyses of the bonding interface were performed. The data were analyzed using Welch's t-test and the Games-Howell exact test. RESULTS. The PFM_B (1376. 8 ± 93.3 N) group demonstrated significantly higher fracture strength than the PFM_A (915.8 ± 206.3 N) and POZ_B (963.8 ± 316.2 N) groups (P<.05). There was no statistically significant difference in fracture resistance between the POZ_A (1184.4 ± 319.6 N) and POZ_B groups (P>.05). Regardless of the design differences of the zirconia cores, fractures involving cores occurred in all specimens of the POZ groups. CONCLUSION. The bilayered anterior POZ crowns showed different fracture resistance and fracture pattern according to the core design compared to PFM.

INFLUENCE OF ARTIFICIAL SALIVA CONTAMINATION ON BONDING OF DENTIN ADHESIVES TO DENTIN (인공타액 오염이 수종 상아질접착제와 상아질간의 결합에 미치는 영향)

  • Ryu, Mee-Ae;Yang, Kyu-Ho;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.383-397
    • /
    • 1992
  • The purpose of this study was to evaluate the influence of artificial saliva contamination on bonding of several dentin adhesives to dentin. Sixty - three human molar teeth extracted within a month were used. Each tooth was sectioned longitudinally in a buccolingual direction to obtain 126 specimens. These specimens were randomly divided into three groups and were treated by Scotchbond 2, Gluma and All bond. Each group was subdivided into three subgroups; normal group not contaminated with artificial saliva, contaminated with artificial saliva and dried group, and contaminated with artificial saliva and washed and dried group. Enamel/dentin bonding agent(Dental Adhesive of Scotchbond 2) was applied and light cured on the treated dentin surfaces. Thereafter P - 50 were cured on them, and specimens were stored in $37^{\circ}C$ artificial saliva for 24 hours before measuring shear bond strength. Shear bond strengths were determined using an universal testing machine with cross head speed 1mm/min and SEM examinations were conducted to evaluate the resin - dentin interface and degree of penetrating resin string into the dentinal tubules. The following results were obtained. 1. Normal groups not contaminated with artificial saliva showed greater shear bond strength than any other group contaminated with artificial saliva(P<0.01). 2. The shear bond strengths showed no significant difference between washed groups with distilled water and not washed groups after contamination with artificial saliva(P>0.05). 3. In normal groups, the shear bond strength of A group was significantly greater than in any other group(P<0.01). 4. In Sand G groups, fractures after shear bond strength tests occured adhesively on resintooth interface in all specimens. But in A groups, fracture of the normal group occured cohesively in dentin and fracture of the contaminated groups occured adhesively and cohesively. 5. On SEM examination, the number of resin strings penetrated into dentinal tubules were the greatest in normal groups, followed by, in descending order, washed groups and not washed groups after contamination with artificial saliva.

  • PDF

A STUDY ON SHEAR BOND STRENGTH OF COMPOSITE RESIN TO DENTIN FOLLOWING SURFACE TREATMENTS (표면처리에 따른 상아질과 콤포짓드 레진간의 전단결합강도에 관한 연구)

  • Noh, Eun-Hee;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.200-208
    • /
    • 1991
  • The purpose of this study was to observe shear bond strength of composite resin to dentin following surface treatment. Freshly extracted forty-eight sound human molars were used in this study. They were stored at $4^{\circ}C$ physiologic saline solution before experiment. The teeth was then mounted with self curing acrylic resin in brass mold. The buccal surfaces of the teeth were grinding approximately 1.5mm by means of water-irrigated grinding wheel to expose the flattened fresh dentin surfaces. The specimens were divided into 6 groups according to preparation and treatment procedures on dentin surfaces; Group 1: Untreated after preparation with No.301 diamond point Group 2: Treated with primer for 60 seconds after preparation with No.301 diamond point Group 3: Untreated after preparation with No.700 fissure carbide bur Group 4: Treated with primer for 60 seconds after preparation with No.700 fissure carbide bur Group 5: Untreated after grinding with 600 grit silicon carbide paper Group 6: Treated with primer for 60 seconds after grinding with 600 grit silicon carbide paper Light cure dental adhesive was applicated to each specimen. Silux plus(3M) was inserted then into polyethylene tube of 3mm diameter and 3mm height, and polymerized to dentin surface. All of the specimens were stored in distilled water at $35.6^{\circ}C$ for 24 hours prior to testing. The shear bond strength was measured using an Instron Universal Testing Machine. The results obtained from this study were as follows: 1. The shear bond strength to dentin was the highest in group II. 2. The shear bond strength to dentin was the lowest in group III. 3. There was no significant difference in shear bond strength to dentin according to preparation instrument. 4. The primer treatment group showed significantly greater shear bond strength than untreated group.

  • PDF