• Title/Summary/Keyword: Unit area load

Search Result 214, Processing Time 0.028 seconds

A FINITE ELEMENT STRESS ANALYSIS OF FIXED PARTIAL DENTURE SUPPORTED BY OSSEOINTEGRATED IMPLANT AND THE NATURAL TEETH WITH REDUCED ALVEOLAR BONE HEIGHT (감소된 치조골 고경을 갖는 치아와 골유착성 임프랜트에 의해 지지되는 고정성 국소의치의 유한요소법적 응력분석)

  • Choi Choong-Kug;Kay Kee-Sung;Cho Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.2
    • /
    • pp.296-326
    • /
    • 1994
  • The purpose of this study was to evaluate the mechanical effects when one implant fixture was connected to the natural teeth with reduced alveolar bone height. This study also examined the effects of increasing the number of abutment teeth and the effects of the intramobile connector and the titanium connector as they were inserted between the implant superstructure and the fixture. The distribution and concentration load was applied to the fixed partial denture(FPD) supported by implant and the natural teeth with reduced alveolar bone height. The stress and displacement of each element was observed and compared by the two-dimensional finite element method. The following results were obtained : 1. The greater the loss of alveolar bone in natural teeth area, the greater the displacement of FPD and the stress concentration in alveolar bone around implant, especially at the stress concentration in the mesial alveolar bone crest around implant fixture. 2. The displacement of FPD was increased more and that of implants fixture was decreased more when intramobile connector was used than titanium connector was used. Also the stress concentration in alveolar bone around implant fixture was greater when intramobile connector than titanium connector. One implication of this finding was that the difference in stiffness of implant and the natural teeth with reduced alveolar bone height could be partially compensated in case of the POM intramobile connector. 3. The amount and direction of displacement and the stress distribution of the 4-unit FPD was better than those of the 3-unit FPD. It implied that the difference of stiffness of implant and natural teeth with reduced alveolar bone height could be partially compensated in case of the 4 unit FPD.

  • PDF

Structural Static Test for Validation of Structural Integrity of Fuel Pylon under Flight Load Conditions (비행하중조건에서 연료 파일런의 구조 건전성 검증을 위한 구조 정적시험)

  • Kim, Hyun-gi;Kim, Sungchan;Choi, Hyun-kyung;Hong, Seung-ho;Kim, Sang-Hyuck
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.97-103
    • /
    • 2022
  • An aircraft component can only be mounted on an aircraft if it has been certified to have a structural robustness under flight load conditions. Among the major components of the aircraft, a pylon is a structure that connects external equipment such as an engine, and external attachments with the main wing of an aircraft and transmits the loads acting on it to the main structure of the aircraft. In civil aircraft, when there is an incident of fire in the engine area, the pylon prevents the fire from spreading to the wings. This study presents the results of structural static tests performed to verify the structural robustness of a fuel pylon used to mount external fuel tank in an aircraft. In the main text, we present the test set-up diagram consisting of test fixture, hydraulic pressure unit, load control system, and data acquisition equipment used in the structure static test of the fuel pylon. In addition, we introduce the software that controls the load actuator, and provide a test profile for each test load condition. As a result of the structural static test, it was found that the load actuator was properly controlled within the allowable error range in each test, and the reliability of the numerical analysis was verified by comparing the numerical analysis results and the strain obtained from the structural test at the main positions of the test specimen. In conclusion, it was proved that the fuel pylon covered in this study has sufficient structural strength for the required load conditions through structural static tests.

Estimation of Collection Variables for Food Wastes (음식폐기물 수거요소 분석 연구)

  • Yoo, Kee-Young;Choi, Kwang-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.111-118
    • /
    • 2001
  • This study was performed to analyze collection parameters for food wastes, which were used to estimate man power and vehicles required to collect those. For this purpose, collection activities were separated into unit operations, such as a pickup, a haul and at-site, and design data that can be used generally were developed by survey and interpretation. In case of a detached dwelling area, the pickup time to collect 1ton of food wastes(Phcs) was $3.3man{\cdot}hour$ and haul time was 22.4km/hour. At-site time of a collection vehicle to load 2.5ton of food wastes was 5minutes and that time was varied according to the loading quantity of vehicles. The estimation of collection time(Thcs), required to move 2.5ton of food wastes from a pickup location to a treatment facility in the same condition for vehicles and man power, showed that Thcs for an apartment area was 3.03hours and for a detached dwelling area was three times as much as that of for the apartment area. More data should be required to evaluate both typical variables associated with collection activities and the variables related to particular district types.

  • PDF

Determination of Heavy Metal Unit Load from Transportation Landuses during a Storm (교통 관련 토지이용에서의 중금속 오염원단위 산정)

  • Kim, Cheol-Min;Lee, So-Young;Lee, Eun-Ju;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.155-160
    • /
    • 2008
  • The urban areas have various landuses such as residential, commercial, industrial and official purposes that are highly concerned with human activities. The other landuses are relating to vehicle activities, which are roads, parking lots, bridges, parks etc. The mainly using landuses by human activities are possessing three different areas that are buildings, parking lots/roads and landscapes. Of these areas, the buildings and landscapes can be classified as non-pollution areas. However, the parking lots or roads are classifying as the main pollution areas because of vehicle activities. Therefore, the landuses arising the nonpoint pollution during a storm in urban areas are roads and parking lots. The vehicles are emitting lots of nonpoint pollutants such as metals and particulate matters and it is impacting on water qualities and aqua-ecosystems nearby the city areas. Therefore, this research was conducted for characterizing the pollutant types and determining the EMCs (Event Mean Concentrations) and unit pollutant loads during a storm. The monitoring was performed on 9 locations such as highways, service area, tollgates, parking lot and bridges. All of the landuses selected for monitoring are concerned with transportation. The results can be effectively used to predict the pollutant loading before urban planning and to select the BMPs (Best Management Practices) for reducing the pollution.

Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation (대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구)

  • In Kwon, Park;Yi, Zhong Hu;Yi, Zhang;Hyun Keun, Ku;Yong Han, Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.

Longitudinal Pattern of Large Wood Distribution in Mountain Streams (산지계류에 있어서 유목의 종단적 분포특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Min Sik;Yeom, Kyu Jin;Lee, Jin Ho;Kimura, Masanobu
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.52-61
    • /
    • 2011
  • Whereas recent researches have elucidated the positive ecological roles of large wood (LW) in fishbearing channels, LW is also recognized as a negative factor of log-laden debris flows and floods in densely populated areas. However in Republic of Korea, no study has investigated longitudinal variations of LW distribution and dynamic along the stream corridor. Hence to elucidate 1) physical factors controlling longitudinal distribution of LW and 2) their effect on variation in LW load amount, we surveyed the amount of LW with respect to channel morphology in a mountain stream, originated from Mt. Ki-ryong in Inje, Gangwondo. Model selection in the Generalized Linear Model procedure revealed that number of boulder (greater than or equal to 1.0 m in diameter), bankfull channel width and their interaction were the best predictors explaining LW load volume per unit channel segment area (unit LW load). In general, boulders scattered within small mountain streams influence LW retention as flow obstructions. However, in this study, we found that the effect of the boulders vary with the channel width; that is, whereas the unit LW load in the segment with narrow channel width increased continuously with increasing boulder number, it in the segment with wide channel width did not depend on the boulder number. This should be because that, in two channels having different widths, the rates of channel widths reduced by boulders are different although boulder numbers are same. Our findings on LW load varying with physical factors (i.e., interaction of boulder number and channel width) along the stream corridor suggest understanding for longitudinal continuum of hydrogeomorphic and ecologic characteristics in stream environments, and these should be carefully applied into the erosion control works for systematic watershed management and subsequent disaster prevention.

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

Prediction of Compulsory Replacement Depth by Empirical Method (경험적인 방법에 의한 강제치환 심도 예측)

  • Hong Won-Pyo;Han Jung-Geun;Lee Jong-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.145-153
    • /
    • 2004
  • Based on the previous studies proposed by many researchers about the evaluation method of replacement depth, a modified formula which incorporates the effect factors such as embanked height and load, replacement depth, cohesive force of original ground and unit weight of embankment etc, was suggested in this study. The new proposed formula was applied in the three construction sites of Kwangyang-Bay Area (Yeocheon, Youlchon, and Kwangyang) constructed by the compulsion replacement method. The application of the new method was investigated through these case studies in domestics. A modified bearing capacity parameter was estimated form the relationship of modified embankment loading and ultimate bearing capacity resulted from the site investigation, and the replacement depth was predicted by using this parameter. In addition, through the relationship analyses between each effect factors to the replacement depth in two areas, Yeocheon and Youlchon, an empirical prediction method which can evaluate the replacement depth in adjoining area was proposed. The predicted value obtained by new method is approximately similar to the measured replacement depth in Kwangyang area.

Fatigue Analysis of External Fuel Tank and Pylon for Fixed Wing Aircraft (고정익항공기용 외부연료탱크 및 파일런 피로 해석)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.162-167
    • /
    • 2020
  • In this study, a fatigue analysis of an external fuel tank and pylon for fixed-wing aircraft was carried out as part of the domestic development of fixed-wing aircraft. Through structural analysis, the analysis areas were selected, and the transfer function for unit loads was established in the selected parts. For each of the continuous load profiles, stress components in the selected areas were calculated using the load of each profile and the transfer function, and the Von Mises equivalent stress was employed as the representative stress of each profile. In addition, the rainflow counting technique was used to extract individual profiles obtained from the initial large load profiles and to calculate their amplitude and average values. For life evaluation, the S-N diagram of the Metallic Materials Properties Development and Standardization (MMPDS) was applied, and the damage value was calculated by Miner's rule to assess the life of the selected area. As a result of the life assessment, the life span requirement for the selected area of the external fuel tank and the pylon was assessed as being satisfied.

Humidification model and heat/water balancing method of PEMFC system for automotive applications (자동차용 연료전지 시스템의 가습모델과 열/물균형 유지방법)

  • Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.339-344
    • /
    • 2005
  • A PEMFC system model for FCEV was constructed and simulated numerically to examine the heat/water flow of the system and air/fuel humidification process for various operation conditions (ambient pressure /temperature/humidity, operating temperature, power load). We modeled PEMFC stack which can generate maximum electricity of about 80 kW. This stack consists of 400 unit cells and each unit cell has $250cm^2$ reacting area. Uniform current density and uniform operating voltage per each cell was assumed. The results show the flow characteristics of heat and water at each component of PEMFC system in macro-scale. The capacity shortage of the radiator occurred when the ambient was hot $(over\;40^{\circ}C)$ and power level was high (over 50 kW). In spite of some heat release by evaporation of water in stack, heat unbalance reached to 20kW approximately in such a severe operating condition. This heat unbalance could be recovered by auxiliary radiators or high speed cooling fan with additional cost. In cold environment, the capacity of radiator exceeded the net heat generation to be released, which may cause a problem to drop the operating temperature of stack. We dealt with this problem by regulating mass flow rate of coolant and radiator fan speed. Finally, water balance was not easily broken when we retrieved condensed and/or unused water.

  • PDF