• Title/Summary/Keyword: Unit Volume

Search Result 1,231, Processing Time 0.037 seconds

On Assessing Inter-observer Agreement Independent of Variables' Measuring Units

  • Um, Yong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.529-536
    • /
    • 2006
  • Investigators use either Euclidean distance or volume of a simplex defined composed of data points as agreement index to measure chance-corrected agreement among observers for multivariate interval data. The agreement coefficient proposed by Um(2004) is based on a volume of a simplex and does not depend on the variables' measuring units. We consider a comparison of Um(2004)'s agreement coefficient with others based on two unit-free distance measures, Pearson distance and Mahalanobis distance. Comparison among them is made using hypothetical data set.

  • PDF

INVARIANT MEAN VALUE PROPERTY AND 𝓜-HARMONICITY ON THE HALF-SPACE

  • Choe, Boo Rim;Nam, Kyesook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.559-572
    • /
    • 2021
  • It is well known that every invariant harmonic function on the unit ball of the multi-dimensional complex space has the volume version of the invariant mean value property. In 1993 Ahern, Flores and Rudin first observed that the validity of the converse depends on the dimension of the underlying complex space. Later Lie and Shi obtained the analogues on the unit ball of multi-dimensional real space. In this paper we obtain the half-space analogues of the results of Liu and Shi.

Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 3-Phase Composites (연속섬유가 보강된 3상 복합재료의 종방향 전단계수 해석)

  • Jeong, Tae-Heon;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2782-2791
    • /
    • 1996
  • The effective longitudinal shear modulus(LSM) of continuous composites is studied theoretically and numerically using 3-phase unit cell model. Circular, hexagonal and rectangular shapes of reinforced fiber are considered to predict the shear modulus as a function of elastic modulus of each phase and volume fraction of interphase and reinforced fiber. It is found that rectangular fiber shape in low fiber volume fraction($v_f$<30%) and circular fiber shape in high volume fraction($v_f$>40%) shows the higher longitudinal shear modulus. Also the obtained values of LSM for rectangular array and by numerical analysis are higher than those of hexagonal array and by theoretical analysis respectively. The reinforcing effects of interphase are more significant in cases of higher fiber volume fraction and circular fiber shape. Not only the spatial distribution and shape of reinforcing fiber but also the volume of interphase have a pronounced effects on the overall LSM. It is also found that the tangent moduous of 2-and 3-phase polymer matrix composites is insensitive to the shape and distribution of reinforcing fibers.

The Impermeable Effect for Bedrock Constructed by Grouting (기반암에서 그라우팅에 의한 차수효과)

  • Yea, Geuguwen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.51-59
    • /
    • 2009
  • This study is based on field data obtained from rock grouting such as RQD value, Unit cement grout volume, Lugeon value(Lu), and Maximum grout pressure in four different dam sites. The relationship were analyzed and compared as follow. The cut-off effect after rock grouting in dam-foundation which are mostly consist of metamorphic rock is better than that of Sedimentary rock. And the impermeable effect after consolidation grouting is more efficiency than the impermeable effect after curtain grouting. The unit cement grout volume are increased as RQD value is higher in rock mass. But there is no relationship between RQD value and Lugeon value. In the sedimentary rock, which is more permeable than metamorphic rock, Lugeon value (Lu) is a linear function (Lu=0.22Vc) of unit cement grout volume (Vc). Cut-off effect of curtain grouting is less influential at each near holes which are already grouted than that of consolidation grouting. And the behavior characteristics of Lugeon value vs. the unit cement grout volume as the order of installations are almost the same.

  • PDF

Investigation of Fiber Distribution in Concrete Batches Discharged from Ready-Mix Truck

  • Sorensen, Christian;Berge, Egil;Nikolaisen, Eirik B.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.279-287
    • /
    • 2014
  • This paper presents the findings of an investigation of the fiber content variations in concrete being discharged from a ready-mix truck at the construction site. Concrete samples were extracted from the truck drums at the beginning, middle and end of discharge. Subsequently, fibers in each sample were separated from the concrete, and weighed. Presumably, synthetic macro fibers will float towards the top, i.e. towards the drum opening, of the inclined, revolving truck-drum, while, on the other hand, steel fibers will tend to gravitate towards the lower parts of the mixer drum. Accordingly, the discharge batch, containing synthetic macro fibers, will contain a higher amount of synthetic fibers per unit volume at the start of discharge than the average unit volume fiber content of the mix, and the content will gradually decrease further down the batch. The discharge batch of steel fiber concrete will contain fewer fibers per unit volume at the start of discharge than the average unit volume fiber content of the mix, and the content should gradually increase further down the batch. The correctness of the foregoing is partly confirmed. A certain percentage of the truck loads did not comply with the proposed requirements, mainly steel fiber reinforced batches, indicating the necessity of a code or guideline amendment. A change in the Norwegian shotcrete directive was made in 2011, based upon experimental research work (2010), which, in combination with the subsequent University of Life Sciences report (2012), constitutes the foundation of this article.

Children서s Understanding on Scientific Units in Elementary School Science Textbooks (초등학교 과학 교과서에서 사용되는 단위에 대한 아동들의 이해도)

  • 김성규;서승조;조태호;백남권;박강은;공정선
    • Journal of Korean Elementary Science Education
    • /
    • v.21 no.2
    • /
    • pp.201-212
    • /
    • 2002
  • This paper aims to find out how did elementary students understand scientific units in science textbooks. The subjects were 191 students of the 6th grade from 7 elementary schools in 3 different areas, consisting of 70 from 4 village schools of, 64 from 2 town schools of Gyeongnam province, and 57 from one city school in Ulsan Metro City. A test was developed based on the analysis of scientific units in the science textbooks and teacher's manuals constructed according to the 6th and 7th National Science Curriculum. The understanding of elementary students' on the scientific units(Temperature, Length, Weight, Volume, Speed, Plane Angle) were surveyed. The result are as follows: Regarding the temperature unit, the students generally well understand why to measure and how to read temperature, but had some problem in recording it, in confusion with the plane angle sign. As for the length unit, they obtained high scores in understanding the purpose of measuring length as well as recording and reading it. Which indicates that they are well aware of and use the unit appropriately. With respect to the weight unit, they got high scores in reading and recording weight, which means most students have no problem using the unit. However, it was found that they do not understand why to use the plate balance scale. The volume unit was one in which the students got relatively lower scores. They do not perceive the object of using a scale cylinder and confuse it with a device of length measurement. The unit of speed is the most difficult one for children's of science to understand, presumably, because it is an derived unit from two basic units. It is also assumed that the students got the highest score in the plane angle unit because they studied the unit immediately before the test. From the children's understanding of science units above the teacher's understanding and teaching methods presumed to play a major role for children to understand and use the science units properly.

  • PDF

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

A Study on the State feedback with Integral Control for a Variable Air Volume Unit (가변 풍량 유닛에 대한 적분기를 가진 상태 궤환 제어에 관한 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.9-14
    • /
    • 2000
  • State feedback with integral control for a variable air volume(VAV) unit which is recently taken notice of for the energy efficiency and saving in the building is studied to investigate the performance of the digital control methodology for the possible practical application. The digital controller which acquires the targat zone temperature and the air flow rate of the supplied air to the zone controls the opening of the damper in the VAV unit. Simulation results are performed for the conditions including reference changes and external thermal variations. In the simulation. simplified conditioned zone and the damper actuator modelling is considered. and relationships between controller gain Parameters and the system dynamics are investigated.

  • PDF

Analysis of concrete characteristic depending on chemical admixtures changing component content ratio (화학혼화제의 성분함유율 변화에 따른 콘크리트의 특성분석)

  • Ryu, Hyun-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • W/C and unit volume, which significantly affect quality of concrete related to strength and durability, are regulated at below $185kg/m^3$ for regular concrete generally used in standard specification for constructions. The aim of this research is to develop chemical admixture and find out its potential use by identifying characteristics of admixtures added to soft concrete and hardening concrete, of which content ratio of component for each type of admixtures is subject to change in accordance with unit volume within KS' allowable range. Sodium gluconate, polyoxyethylene nonylphenyl ether, poly carboxylic copolymer in slump, which is characteristic of soft concrete, are deemed highly sensitive while there is no air entrainment except for $10\sim70%$ in WE, WR component content ratio and NP. In hardening concrete, strength in general showed higher action in compressive strength and tensile strength than in plain strength. Use of proper AE agent and AE water reducing agent at the same time is deemed to be used as chemical admixtures capable of manufacturing high-quality, high-quantity concrete.

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF