• Title/Summary/Keyword: Unit Power Factor

Search Result 251, Processing Time 0.038 seconds

Overall Performance characteristic for 300MW Taean IGCC Plant (300MW 태안 IGCC 플랜트 종합성능 특성)

  • Kim, Hakyong;Kim, Jaehwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • As a part of the government renewable energy policy, KOWEPO is constructing 300MW IGCC plant in Taean. IGCC plant consists of gasification block, air separation unit and power block, which performance test is separately conducted. Overall performance test for IGCC plant is peformed to comply with ASME PTC 46. Major factors affected on the overall efficiency for IGCC plant are external conditions, each block performance(gasification, ASU, power block), water/steam integration and air integration. Performance parameters of IGCC plant are cold gas efficiency, oxygen consumption, sensible heat recovery of syngas cooler for gasification block and purity of oxygen, flow amount of oxygen and nitrogen, power consumption for air separation unit and steam/water integration among the each block. The gas turbine capacity applied to the IGCC plant is 20 percent higher than NGCC gas turbine due to the low caloric heating value of syngas, therefor it is possible to utilize air integration between gas turbine and air separation unit to improve overall efficiency of the IGCC plant and there is a little impact on the ambient condition. It is very important to optimize the air integration design with consideration to the optimized integration ratio and the reliable operation. Optimized steam/water integration between power block and gasification block can improve overall efficiency of IGCC plant where the optimized heat recovery from gasification block should be considered. Finally, It is possibile to achieve the target efficiency above 42 percent(HHV, Net) for 300MW Taean IGCC plant by optimized design and integration.

  • PDF

Analysis of electric circuit using capacitor for driving linear compressor (콘덴서를 이용한 선형압축기 구동 전기회로 해석)

  • Ko, Jun-Seok;Kim, Hyo-Bong;Park, Seong-Je;Hong, Yong-Ju;Yeom, Han-Kil;Koh, Deuk-Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.43-47
    • /
    • 2012
  • A linear compressor generates pulsating pressure and oscillating flow in a cryocooler such as Stirling cryocooler and pulse tube refrigerator. It is driven by AC power source and designed to operate at resonance of piston motion. The driving voltage level is determined by electric parameters of resistance, inductance and thrust constant of linear motor. From voltage equation on linear motor, the power factor of driving power is inherently less than 1. The phase difference between voltage and current of supplied power can be zero using capacitor and this can minimize a supply voltage level. Especially, the linear compressor of kW class requires high voltage and thus can cause a difficulty in selecting power supply unit due to limitation of voltage level. The capacitor in driving electric circuit is useful to settle this problem. In this study, the electric circuit of linear compressor is analytically investigated with assumption of mechanical resonance. The electric parameters of commercial linear motor are used in the analysis. The effects of capacitor on driving voltage level and power factor are investigated. From analytic results, it is shown that the voltage level can be mimized with using capacitor in driving electric circuit.

A Development of CRU for KODAS (한국형 배전자동화용 수용가 단말제어장치 개발)

  • Kim, Jong-Soo;Kye, Moon-Ho;Oh, Sang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.419-421
    • /
    • 1994
  • A CRU (Customer Remote Unit) for KODAS(Korea Distribution Automatic System) is presented in the paper. This equipment works as a terminal unit for the Load Control and the AMR(Automatic Meter Reading). It is composed of control, drive, input, display, and communication parts. A CRU calculates and memorizes the active power, time-of-use, and demand by the pulse from watthour meter for AMR. It also transfers the data to Center Control System. It can measure current, voltage, and power factor by adding the simple circuit. For load control, It receives the necessary informations such as the load control periods, modes, and time intervals. It controls the load until the stopping commad comes. The system reliability has been proved using a prototype.

  • PDF

A Study on the Design and Rectification Method of a KW class Power Converter Unit for an Aircraft Mounted Guided Missile (항공기 장착 유도탄의 KW급 전력변환장치 설계와 정류방식에 따른 연구)

  • Kim, Hyung-Jae;Jung, Jae-Won;Lee, Dong-Hyeon;Kim, Gil-Hoon;Moon, Mi-Youn
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.99-104
    • /
    • 2022
  • Recently, the domestic demand for weapon systems based on aircraft platforms is gradually increasing. In particular, the demand for effective precision guided missile(PGM) which cruises for several hundred kilometers after launch to strike the ground target is rising drastically, but it is in the early stages of development, and research based on it are limited. This paper is a study on the power converter unit(PCU) within PGM which is mounted on an aircraft platform based on MIL-STD-1760, which is an interface between an aircraft and PGM. We investigated the electrical properties and structure of the umbilical connector, and the aircraft/store electrical interconnection system. Also, the focus on the design specifications of the PCU that supplies power were described. This result 3 phase AC input, which is the state for the guided simulation power supply in the state of being mounted on an aircraft that rectification method with power factor correction(PFC) compared to bridge rectifier circuit. In the future, it may be used as a basis for power supply design on aircraft mounted weapon systems.

The Design of high Efficiency APLC for the Low Power load (저용량 부하를 위한 고효율 APLC의 설계)

  • 김병진;전희종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.217-221
    • /
    • 2001
  • In this paper, APLC(Active Power Line Conditioner) is designed for low consumed power electrical equipment such as communication electronic equipment, computer sever and etc.. Because APLC which is hunted to the mains controls only the elements of harmonics, the designed APLC is very high efficient. Additionally, controller designed with low cost micro-controller and analog circuit has good merit economically. Simulation and experimental results on a prototype verify the feasibility of the proposed scheme.

  • PDF

A Single-phase Uninterruptible Power Supply for a Superconducting Magnetic Energy Storage Unit (초전도 에너지 저장 시스템을 위한 단상 무정전 전원공급장치)

  • Kang Feel-Soon;Park Jin-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.685-688
    • /
    • 2006
  • A single-phase uninterruptible power supply system suitable for a SMES unit is proposed to achieve a simple circuit configuration and higher system reliability. It reduces the number of switching devices by applying a common-arm scheme. Operational principles to normal, stored-energy, and bypass mode are discussed in detail. Eliminating some of the switches or substituting passive components for active switches generally increases the sophistication and reduces degree of freedom in control strategy. However, the high-performance digital controller ran execute the complicated control task with no additional cost. The validity of the proposed UPS system will be verified by a computer-aided simulation.

  • PDF

Power Cost Analysis of Go-ri Nuclear Power Plant Units 1 and 2

  • Chung, Chang-Hyun;Kim, Chang-Hyo;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.101-116
    • /
    • 1976
  • An attempt is made to analyze the unit nuclear power cost of the Go-ri units 1 and 2 in terms of a set of model data. For the calculational purpose, the power cost is first decomposed into the cost components related to the plant capital, operation and maintenance, working capital requirements, and fuel cycle operation. Then, POWERCO-50 computer code is applied to enumerate the first three components and MITCOST-II is used to evaluate the fuel cycle cost component. The specific numerical results are the fuel cycle cost of Go-ri unit 2 for three alternative fuel cycles presumed, levelized unit power cost of units 1 and 2, and the sensitivity of the power cost to the fluctuation of the model data. Upon comparision of the results with the power cost of the fossil power plants in Korea, it is found that the nuclear power is economically preferred to the fossil power. Nevertheless, the turnkey contract value of Go-ri unit 2 appears to be rather expensive compared with the available data on the construction cost of the PWR plants. Therefore, it is suggested that, in order to make the nuclear power plants more attractive in Korea, the unfavorable contract of such kind must be avoided in the future introduction of the nuclear power plant. Capacity factor is of prime importance to achieving the economic generation of the nuclear electricity from the Go-ri plant. Therefore, it is concluded that more efforts should be directed to make the maximum use of the Go-ri plant.

  • PDF

A Study on Track Drive Unit Test and Evaluation for Mini Excavators (소형 굴삭기의 주행구동유니트 시험평가에 관한 연구)

  • Lee, Gi-Chun;Lee, Young-Bum;Choi, Byung Oh
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.139-144
    • /
    • 2015
  • Track drive unit adopted in the small sized excavator generally have been used in the construction equipment under the 10 tons as the driving device with forwarding and reversing of excavator. It is required to study the accelerated life test applied by over torque and speed to test the durability life test reflected the many driving modes of small sized excavator and also need to equip the comprehensive performance and life test equipments to do the various performance tests. This study had analyzed the failure modes of the components, and calculated the equivalent loads investigated the used loads in the real field conditions and elicits the acceleration factor adopted in the inverse power model. Also, this study have considered the changes of the acceleration factor and the durability test time in the case of the rotary group and the bearing through analyzing the main failure modes. It was calculated the no failure test time about 2 samples and confidence level 90% and elicited the accelerated life time 720 hours.

Accelerated Life Test and Analysis of Track Drive Unit for an Excavator (주행 구동 유니트의 가속 수명 시험 및 분석)

  • Lee Y.B.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2005
  • For the reliability evaluation of the track drive unit(TDU), firstly, we analyzed the major failure modes through FMEA(failure mode & effects analysis), FTA(failure tree analysis), and 2-stage QFD(quality function deployment), and then quantitatively determined the priority order of test items. The Minitab analysis was also performed for prediction of life distribution and parameters of TDU by use of field failure data collected from 430 excavators for two years. In addition, we converted the fluctuation load in field conditions into the equivalent load, and for evaluation of the accelerated lift by the cumulative fatigues, the equivalent load is again divided into the fluctuation load by reference of test time. And then, by use of the test method in this paper, the acceleration factor(AF) of needle bearing inside planetary gear which is the most weakly designed part of TDU is achieved as 5.3. This paper presents the quantitative selection method of test items for reliability evaluation, the determination method of the accelerated life test time, and the method of non-failure test time based on a few of samples. And, we proved the propriety of the proposed methods by experiments using a TDU for a 30 ton excavator.

  • PDF

AC-DC Converter Control for Power Factor Correction of Inverter Air Conditioner System (인버터 에어컨 시스템의 역률보상을 위한 AC-DC 컨버터 제어)

  • Park, Gwi-Geun;Choi, Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.154-162
    • /
    • 2007
  • In this paper, we propose a new AC-DC converter control method to comply with harmonics regulation(IEC 61000-3) effective for the inverter system of an air conditioner whose power consumption is less than 2,500W. There are many different ways of AC-DC converter control, but this paper focuses on the converter control method that is adopting an input reactor with low cost silicon steel core to strengthen cost competitiveness of the manufacturer. The proposed control method controls input current every half cycle of the line frequency to get unit power factor and at the same time to reduce switching loss of devices and acoustic noise from reactor. This kind of converter is known as a Partial Switching Converter(PSC). In this study, theoretical analysis of the PSC has been performed using Matlab/Simulink while a 16-bit micro-processor based converter has been used to perform the experimental analysis. In the theoretical analysis, electrical circuit models and equations of the PSC are derived and simulated. In the experiments, micro-processor controls input current to keep the power factor above 0.95 by reducing the phase difference between input voltage and current and at the same time to maintain a reference DC-link voltage against voltage drop which depends on DC-link load. Therefore it becomes possible to comply with harmonic regulations while the power factor is maximized by optimizing the time of current flow through the input reactor for every half cycle of line frequency.