• Title/Summary/Keyword: Unit Fabrication

Search Result 307, Processing Time 0.028 seconds

Fabrication and Characteristics of Infrared Photodiode Using Insb Wafer with p-i-n Structure (p-i-n 구조의 InSb 웨이퍼를 이용한 적외선 광다이오드의 제조 및 그 특성)

  • Cho, Jun-Young;Kim, Jong-Seok;Son, Seung-Hyun;Lee, Jong-Hyun;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.239-246
    • /
    • 1999
  • A highly sensitive photovoltaic infrared photodiode was fabricated for detecting infrared light in $3{\sim}5\;{\mu}m$ wavelength range on InSb wafer with p-i-n structure grown by MOCVD. Silicon dioxide($SiO_2$) insulating films for the junction interface and surface of photodiode were prepared using RPCVD because InSb has low melting point and evaporation temperature. After formation of In ohmic contacts by thermal evaporation, the electrical properties of the photodiode were characterized in dark state at 77K. A product of zero-bias resistance and area($R_0A$) showed $1.56{\times}10^6\;{\Omega}{\cdot}cm^2$ that satisfied BLIP(background limited infrared photodetector) condition. When the photodiode was tested under infrared light, the normalized detectivity of about $10^{11}\;cm{\cdot}Hz^{1/2}{\cdot}W^{-1}$ was obtained. we successfully fabricated a unit cell with InSb IR array with good quantum efficiency and high detectivity.

  • PDF

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells (La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향)

  • Lim, Jinhyuk;Jung, Hwa Young;Jung, Hun-Gi;Ji, Ho-Il;Lee, Jong-Ho
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Analysis of the Effect of Entry-Level 3D Printer Materials on CT Images (보급형 3D프린터 재료가 CT 영상에 미치는 영향 분석)

  • Se-Hwan, Park;Hyun-Jung, Jo;Sung-Jun, Lee;Song-Bin, Lee;Sang-Hyub, Park;Dae-Yeon, Ryu;Yeong-Cheol, Heo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.673-680
    • /
    • 2022
  • In this study, based on PLA, we analyzed the Hounsfield Unit (HU) of materials containing 20% each of aluminum, wood, copper, carbon, and marble, and tried to analyze how they affect the image. A cylindrical phantom of 5×30×30 ㎣ (thickness×diameter×height) was fabricated using a entry-level 3D printer. The kV was changed to 80, 100 and 120, and the mAs was changed to 100 and 200 mAs, and the phantom in the center of the table was cross-scanned under a total of six conditions. A circular ROI was set using image J program and the quantification value of the material part HU and the quantification value of the peripheral part CNR were obtained. The HU average of the material part increased in the order of [PLA - wood 20%], [PLA - marble 20%], [PLA - carbon 20%], [PLA 100%], [PLA - aluminum 20%], [PLA - copper 20%] (p<0.05) a negative correlation was confirmed with the HU by increasing kV. It was confirmed that the CNR value in the peripheral area increased in the order of [PLA - marble 20%], [PLA - copper 20%], [PLA - carbon 20%], [PLA - wood 20%], [PLA - aluminum 20%], and [PLA - 100%] (p<0.05). Human organs with similar HU values for each material are [PLA - copper 20%] compact bone, [PLA - aluminum 20%] cancellous bone, [PLA 100%] coagulated blood, [PLA - carbon 20%] and [PLA - marble 20%] liver, muscle, spleen and [PLA - wood 20%] had similar values to fat. In addition, we confirmed the blur phenomenon that blurs the image around the filament with all materials, and confirmed that [PLA 100%] especially has the most blur around the filament. Therefore, it is considered desirable to reflect the HU value of the target organ and consider cloudiness around the phantom when selecting materials for medical phantom fabrication, and this research can provide basic data.

Implant Isolation Characteristics for 1.25 Gbps Monolithic Integrated Bi-Directional Optoelectronic SoC (1.25 Gbps 단일집적 양방향 광전 SoC를 위한 임플란트 절연 특성 분석)

  • Kim, Sung-Il;Kang, Kwang-Yong;Lee, Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.52-59
    • /
    • 2007
  • In this paper, we analyzed and measured implant isolation characteristics for a 1.25 Gbps monolithic integrated hi-directional (M-BiDi) optoelectronic system-on-a-chip, which is a key component to constitute gigabit passive optical networks (PONs) for a fiber-to-the-home (FTTH). Also, we derived an equivalent circuit of the implant structure under various DC bias conditions. The 1.25 Gbps M-BiDi transmit-receive SoC consists of a laser diode with a monitor photodiode as a transmitter and a digital photodiode as a digital data receiver on the same InP wafer According to IEEE 802.3ah and ITU-T G.983.3 standards, a receiver sensitivity of the digital receiver has to satisfy under -24 dBm @ BER=10-12. Therefore, the electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysed and measured results of the implant structure, the M-BiDi SoC with the implant area of 20 mm width and more than 200 mm distance between the laser diode and monitor photodiode, and between the monitor photodiode and digital photodiode, satisfies the electrical crosstalk level. These implant characteristics can be used for the design and fabrication of an optoelectronic SoC design, and expended to a mixed-mode SoC field.

IGRINS Design and Performance Report

  • Park, Chan;Jaffe, Daniel T.;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Yu, Young Sam;Kaplan, Kyle;Mace, Gregory;Kim, Hwihyun;Lee, Jae-Joon;Hwang, Narae;Kang, Wonseok;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.90-90
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is the first astronomical spectrograph that uses a silicon immersion grating as its dispersive element. IGRINS fully covers the H and K band atmospheric transmission windows in a single exposure. It is a compact high-resolution cross-dispersion spectrometer whose resolving power R is 40,000. An individual volume phase holographic grating serves as a secondary dispersing element for each of the H and K spectrograph arms. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{{\prime}{\prime}}{\times}15^{{\prime}{\prime}}$. IGRINS has a plate scale of 0.27" pixel-1 on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with a SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized ($0.96m{\times}0.6m{\times}0.38m$) rectangular Dewar. The fabrication and assembly of the optical and mechanical components were completed in 2013. From January to July of this year, we completed the system optical alignment and carried out commissioning observations on three runs to improve the efficiency of the instrument software and hardware. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present the instrumental performance test results derived from the commissioning runs at the McDonald Observatory.

  • PDF

Design and Fabrication for the Development of Auto Pattern Maker (자동취형기 개발을 위한 설계 및 제작)

  • Lee, Young-Il;Kim, Jung-Hee;Park, Jee-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.231-239
    • /
    • 2013
  • Purpose: To design and fabricate the auto pattern maker for the development. Methods: we got the necessary data, needed in design, by using CAD. Based on the these data, we fabricated the trial product for the development of the auto pattern maker. Results: The auto pattern maker were composed with combinations of many elements; pattern making assembly, control panel, frame attachment and prober unit. The pattern making assembly was comprised of the cutter, the pattern holder, pattern remover and silence cover which could minimize the sound during the cutting process. The control panel was designed to be connected and operated with the main printed circuit board. The prober could get the eye shape data by scanning of 1.8 degrees around the groove of the frame through the encoding data according to the address. After starting, scanning was carried out in two passes, i.e. one right-handed and one left-handed. Communication connector could send the eye shape data from auto pattern maker to outer system with the RS232C transmission system. By using the one-way analysis of variance, we got the error rate of cut pattern size for ${\Phi}22mm$, ${\Phi}55mm$ and ${\Phi}62mm$. Because F-value was 0.510 and p-value was 0.601, no statistically significant differences were found. Also, the mean cutting error of the auto pattern maker was 0.0274 mm. Conclusions: we could succeed in making the trial product by applying it to the development of the auto pattern maker. The role of this auto pattern maker is to find a exact required size of lens to fit the frame by measuring the frame. The acquired data are transferred to outer system for grinding and finishing with patternless process. Also, the trial product can produce pattern to fit the frame. Therefore, it was confidently expected that the optometrists could handily produce pattern to fit the frame with this trial product and dispense the ophthalmic lens because of its efficiency and convenience compared to the past.