• Title/Summary/Keyword: Uniformity of velocity

Search Result 206, Processing Time 0.027 seconds

Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds

  • Wu, Mengqi;Gui, Nan;Yang, Xingtuan;Tu, Jiyuan;Jiang, Shengyao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1416-1428
    • /
    • 2021
  • Pebble flow characteristics can be significantly affected by the configuration of pebble bed, especially for HTGR pebble beds. How to achieve a desired uniform flow pattern without stagnation is the top priority for reactor design. Pebbles flows inside some specially designed pebble bed with arc-shaped contraction configurations at the bottom, including both concave-inward and convex-outward shapes are explored based on discrete element method. Flow characteristics including pebble retention, residence-time frequency density, flow uniformity as well as axial velocity are investigated. The results show that the traditionally designed pebble bed with cone-shape bottom is not the most preferred structure with respect to flow pattern for reactor design. By improving the contraction configuration, the flow performance can be significantly enhanced. The flow in the convex-shape configuration featured by uniformity, consistency and less stagnation, is much more desirable for pebble bed design. In contrast, when the shape is from convex-forward to concave-inward, the flow shows more nonuniformity and stagnation in the corner although the average cross-section axial velocity is the largest due to the dominant middle pebbles.

Analysis and Control of Uniformity by the Feed Gate Adaptation of a Granular Spreader (입제비료 살포기의 출구조절에 의한 균일도의 분석과 제어)

  • Kweon, G.;Grift, Tony E.;Miclet, Denis;Virin, Teddy;Piron, Emmanuel
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • A method was proposed which employed control of the drop location of fertilizer particles on a spinner disc to optimize the spread pattern uniformity. The system contained an optical sensor as a feedback mechanism, which measured discharge velocity and location, as well as particle diameters to predict a spread pattern of a single disc. Simulations showed that the feed gate adaptation algorithm produced high quality patterns for any given application rate in the dual disc spreader. The performance of the feed gate control method was assessed using data collected from a Sulky spinner disc spreader. The results showed that it was always possible to find a spread pattern with an acceptable CV lower than 15%, even though the spread pattern was obtained from a rudimentary flat disc with straight radial vanes. A mathematical optimization method was used to find the initial parameter settings for a specially designed experimental spreading arrangement, which included the feed gate control system, for a given flow rate and swath width. Several experiments were carried out to investigate the relationship between the gate opening and flow rate, disc speed and particle velocity, as well as disc speed and predicted landing location of fertilizer particles. All relationships found were highly linear ($r^2$ > 0.96), which showed that the time-of-flight sensor was well suited as a feedback sensor in the rate and uniformity controlled spreading system.

The Inlet Shape Optimization of Aftertreatment System for Diesel Engine with Taguchi Method (다꾸치 방법을 이용한 디젤엔진용 후처리시스템의 입구부 형상 최적화)

  • Jung, Jong-Hwa;Kim, Jong-Hag;Kim, Sang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.145-151
    • /
    • 2012
  • New design of catalytic converter is proposed by optimization of DFSS (Design For Six Sigma) and DOE (Design Of Experiment) method which is based on taguchi matrix. As a result of the optimization of design of catalytic converter, this paper classifies Exhaust-downpipe shapes with 3 parameters to increase flow velocity uniformity of front catalytic substrate face from CFD results. after finishing with L9 Taguchi test matrix, it can be found the main effect of each design parameter of concept model, and optimal design level. in conclusion, it can be increase flow uniformity from 0.60 upto 0.80 with optimal diffuser shape for Turbo-charger.

The Effects of the Capsule Density Uniformity on the Behavior of Cylindrical Capsules Transported through a Pipiline

  • Rhee, Kyoung-Hoon
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.115-124
    • /
    • 1994
  • This paper presents the results of a study conducted to improve the understanding of the characteristics of cylindrical capsule flow in a pipeline by taking into account of the effect of capsule density uniformity. The effect fo capsule density variation in the axial direction was studied both experimentally and analytically. The experiments were conducted in a 190mm diameter straight pipe 17m long. The velocity, gap and tilt of capsules were measured under various conditions. In order to interpret the data on various capsule density conditions, the stability index given in the dimensionless number was introduced. The motion of capsules in pipelines is strongly affected by the stability of the capsules characterized by the statility index. The experiments conducted proved that the stability index is a vaild criterion for explaining and correlating data on the capsule motion and the capsule denisity uniformity.

  • PDF

A Study on the Uniformity Improvement of Residual Layer of a Large Area Nanoimprint Lithography

  • Kim, Kug-Weon;Noorani, Rafigul I.;Kim, Nam-Woong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.19-23
    • /
    • 2010
  • Nanoimprint lithography (NIL) is one of the most versatile and promising technology for micro/nano-patterning due to its simplicity, high throughput and low cost. Recently, one of the major trends of NIL is large-area patterning. Especially, the research of the application of NIL to TFT-LCD field has been increasing. Technical difficulties to keep the uniformity of the residual layer, however, become severer as the imprinting area increases. In this paper we performed a numerical study for a large area NIL (the $2^nd$ generation TFT-LCD glass substrate ($370{\times}470$ mm)) by using finite element method. First, a simple model considering the surrounding wall was established in order to simulate effectively and reduce the computing time. Then, the volume of fluid (VOF) and grid deformation method were utilized to calculate the free surfaces of the resist flow based on an Eulerian grid system. From the simulation, the velocity fields and the imprinting pressure during the filling process in the NIL were analyzed, and the effect of the surrounding wall and the uniformity of residual layer were investigated.

Numerical Study for Flow Uniformity in Selective Catalytic Reduction(SCR) Process (SCR 공정에서 반응기 내부의 유동 균일화를 위한 수치적 연구)

  • Jung, Yu-Jin;Hong, Sung-Gil;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4666-4672
    • /
    • 2011
  • Performance of NOx removal in SCR(Selective Catalytic Reduction) process depends on such various factors as catalyst factors (catalyst composition, catalyst form, space velocity, etc.), temperature of exhaust gas, and velocity distribution of exhaust gas. Especially the flow uniformity of gas stream flowing into the catalyst layer is believed to be the most important factor to influence the performance. In this research, the flow characteristics of a SCR process at design stage was simulated, using 3-dimensional numerical analysis method, to confirm the uniformity of the gas stream. In addition, the effects of guide vanes, baffles, and perforated plates on the flow uniformity for the inside and catalyst layer of the reactor were studied in order to optimize the flow uniformity inside the SCR reactor. It was found that the installation of a guide vane at the inlet duct L-tube part and the installation of a baffle at the upper part is very effective in avoiding chaneling inside the reactor. It was also found that additional installation of a perforated plate at the lower part of the potential catalyst layer buffers once more the flow for very uniform distribution of the gas stream.

Uniformity Prediction of Mist-CVD Ga2O3 Thin Film using Particle Tracking Methodology (입자추적 유동해석을 이용한 초음파분무화학기상증착 균일도 예측 연구)

  • Ha, Joohwan;Park, Sodam;Lee, Hakji;Shin, Seokyoon;Byun, Changwoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.101-104
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity compared to ALD and PECVD methods. It is capable of reacting to the substrate by misting an aqueous solution using ultrasonic waves under vacuum-free conditions of atmospheric pressure. In particular, Ga2O3 is regarded as advanced power semiconductor material because of its high quality of transmittance, and excellent electrical conductivity through N-type doping. In this study, Computational Fluid Dynamics were used to predict the uniformity of the thin film on a large-area substrate. And also the deposition pattern and uniformity were analyzed using the flow velocity and particle tracking method. The uniformity was confirmed by quantifying the deposition cross section with an FIB-SEM, and the consistency of the uniformity prediction was secured through the analysis of the CFD distribution. With the analysis and experimental results, the match rate of deposition area was 80.14% and the match rate of deposition thickness was 55.32%. As the experimental and analysis results were consistent, it was confirmed that it is possible to predict the deposition thickness uniformity of Mist-CVD.

Influence of the Distribution of Wind Velocity and Mist Concentration for the Improvement of Efficiency with an Electrostatic Precipitator (전기집진장치의 효율 개선을 위한 풍속 분포 및 입자농도 분포의 영향)

  • 임헌찬;이덕출
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.155-161
    • /
    • 1998
  • Recently, there are widely needs of small scale electrostatic precipitator(ESP) in machine shop and other factories. Since the space of such factories is limited, the improvement of collection efficiency is predominant subject. In this study, we examine the influence of distribution of wind velocity and oil mist concentration inside the ESP in order to improve the performance of the ESP. The distribution of wind velocity and mist concentration is measured respectively in a cross-sectional plane of the ESP. The former is controlled by using a louver which is placed in front of an ionizer and the latter is controlled by lengthening the pipe of entrance of the ESP in order to have plenty of time that mist is dispersed evenly. It is shown that the uniformity of distribution of wind velocity and mist concentration inside the ESP can be getting by adopting a louver with proper shape and lengthening the pipe of entrance and is also contributed to collection efficiency considerably.

  • PDF

Design of the Perforated Pipe in Water Treatment Process using CFD (전산유체역학(CFD)를 활용한 정수공정에서 유공관 설계)

  • Cho, Young-Man;Yoo, Soo-Jeon;Roh, Jae-Soon;Bin, Jae-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.887-893
    • /
    • 2010
  • Role of the perforated pipe is to drain the water with equal pressure and velocity through the holes of perforated pipe. The perforated pipe is being used in many processes of water treatment system, however, the design parameter of perforated pipe is not standardized in korea. In this study, we have found the design parameter of perforated pipe in the water treatment system using the Computational Fluid Dynamics (CFD). The uniformity of outflow from the perforated pipe is directly affected according to area ratio (gross area of holes/surface area of the perforated pipe). In other words, the uniformity of outflow is improved as area ratio is smaller. Also, at the same area ratio, the uniformity of outflow is improved as number of holes is increase. Specially, in case of the two holes per length of pipe diameter (2/D) shows the most uniformity of outflow and the best hydraulic with the smaller pressure drop. When the inlet velocity of pipe is about 0.06m/sec, the flux of pipe has decreased as from front to backward. When the inlet velocity is 3 m/s, the flux of pipe has increased as from front to backward.

An Experimental Study on the Flow Characteristics of a Swirl-Jet Diffuser (공장환기용 선회 제트 디퓨저의 유동 특성에 관한 실험 연구)

  • Lee, C.S.;Jurng, J.;Jeong, S.Y.;Hong, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1994
  • An experimental study is performed on the flow characteristics of a swirl-jet diffuser for factory ventilation. Swirl number ranges from 0(nonswirl jet) to 0.6 when the angle of swirl vane is 60 degree. As swirl becomes strong, the maximum velocity in the plane perpendicular to jet axis decreases fast and the uniformity of velocity becomes good, particularly in the ventilated area. The similarity in velocity profiles has been found for axial velocity from even when swirl number equals 0.6. The flow characteristics of the swirl-jet which has the swirl number of 0.6 is thought to be the best among these three swirl numbers for factory ventilation. However, the pressure drop in the diffuser increases as the swirl becomes strong. This should be considered in the design of the total ventilation system including a duct system.

  • PDF