• Title/Summary/Keyword: Uniform heat flux

Search Result 164, Processing Time 0.021 seconds

A study on the heat transfer characteristics of swirling flow in a circular sectioned $180^{\circ}C$bend with uniform heat flux (균일 열플럭스가 있는 $180^{\circ}C$ 원형단면 곡관의 선회유동 열전달특성 연구)

  • Lee, Sang-Bae;Gwon, Gi-Rin;Jang, Tae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.615-627
    • /
    • 1997
  • An experiment was performed to local heat transfer coefficient and Nusselt number in the circular duct of 180.deg. bend for Re=6*10$^{4}$, 8*10$^{4}$ and 1*10$^{5}$ at swirling flow and non-swirling flow conditions. The test tube with circular section was made by stainless which has curvature ratio 9.4. The wall of test tube was heated directly by electrical power to 3.51 kw and swirling motion of air was produced by a tangential inlet to the pipe axis at the 180 degree. Measurements of local wall temperatures and bulk mean temperature of air are made at four circumferential positions in the 16 stations. The wall temperatures show particularly reduced distribution curve at bend for non-swirling flow but this effect does not appear for swirling flow. Nusselt number distributions for swirling flow which was calculated from the measured wall and bulk temperatures were higher than that of non-swirling flow. Average Nusselt number of swirling flow increased about 90 ~ 100% than that of non-swirling flow whole through the test tube. The Nu/N $u_{DB}$ values at the station of 90.deg. for non-swirling flow and swirling flow are respectively about 2.5 and 4.8 at Re=6*10$^{4}$. Also that is good agreement with Said's result for non-swirling flow. flow.

The optimal array of various heat-generating heaters located on one wall of a vertical open top cavity (상부가 개방된 수직 캐비티내의 한쪽면에 배열된 다양한 발열조건을 갖는 발열체의 최적배열)

  • Riu, Kap-Jong;Choo, Hong-Lock;Choi, Byung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • An experimental investigation of two-dimensional steady natural convection cooling in a vertical open top cavity with conducting side walls of finite thickness is presented. The various heat-generating discrete heaters are located on one vertical wall of the cavity. When each heater dissipates different amount of power, the purpose of the work is to obtain the optimal array condition of the heaters. The four cases of non-uniform heating conditions are considered. The temperature fields in the cavity were visualized by the interferometer and local temperatures of the vertical wall were measured by thermocouples. The heaters were arranged in two configurations: flush-mounted on a vertical wall or protruding from the wall about 4.5 mm. The vertical wall was constructed out of copper or epoxy-resin sheet. Experiments have been conducted for air with constant Prandtl number(Pr=0.7), the aspect ratio of 4.6, 7.5, 9.5, power input in the range of 0.9 W ~ 4.2 W. For the enhancement of the cooling effectiveness, the upper and lower of vertical wall would give the better position for the heaters of higher heat flux.

Analysis of Anisotropic Turbulent Heat Transfer in Nuclear Fuel Bundles (핵연료 집합체내의 비등방성 난류 열전달에 관한 해석적 연구)

  • Kim, Sin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.35-46
    • /
    • 1988
  • The prediction of clad surface temperatures is important to the design and the safety anlaysis of nuclear reactor. The accurate prediction requires the detailed knowledge of the flow structure and heat transfer, which is complicate due to anisotropic turbulent phenomena. A two-equation model including anisotropic eddy viscosity model is applied to forecast the velocity distribution. And the temperature field is calculated with uniform wall heat flux. The Galerkin's weighted residual finite element method has been used to calculate the turbulent quantities right up to the wall. The numerical results show good agreement with available data and that turbulence anisotropy strongly affects on the mean flow and thus the temperature field. And Nu-P/D correlation is established for sodium coolant in close-packed equilateral triangular bundle in the P/D range of 1.05 to 1.30.

  • PDF

Optimum Design of Liquid Cooling Heat Exchangers and Cooling-Fluid Distributors for a Amplifier Cabinet of Telecommunication Equipment (통신장비용 앰플리파이어 액체냉각장치 및 냉각유체 분배기의 최적설계 및 성능특성)

  • Yun, Rin;Kim, Yong-Chan;Kim, Hyun-Jong;Choi, Jong-Min;Cheon, Deok-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • Three liquid cooling heat exchangers for cooling of telecommunication equipment were designed and their cooling performances were tested. The liquid cooling heat exchangers had twelve rectangular channels $(5\times3 mm)$ with different flow paths of 1, 4, and 12. Silicon rubber heaters were used to provide heat flux to the test section. Heat input was varied from 75 to 400 W, while flow rate and inlet temperature of working fluid were altered from 1.2 to 4.0 liter/fin and from 15 to 3$30^{\circ}C$, respectively. The 4-path heat exchanger showed lower and more uniform average inner temperatures between heaters and the surface of heat exchanger than those of the others. To obtain optimal distribution of working fluid to each channels of liquid cooling heat exchangers, 2-3-2 and 4-3 type tube distributors were designed, and their distribution performances of working fluid were numerically and experimentally investigated. The distributor of the 2-3-2 type showed superior distribution performance compared with those of the 4-3 type distributor.

Heat Transfer from Single and Arrays of Impinging Water Jets(I)-Single Water Jet- (단일수분류 및 수분류군에 의한 열전달(I)-단일수분류-)

  • Eom, Gi-Chan;Lee, Jong-Su;Yu, Ji-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1105-1114
    • /
    • 1997
  • The heat transfer characteristics of free surface water jet impinging normally against a flat uniform heat flux surface were investigated. This deals with the effect of three nozzle configurations (Cone type, Reverse cone type, Vertical circular type) on the local and the average heat transfer. Heat transfer measurements were made for water jet issuing from a nozzle of which exit diameter 8 mm. The experimental conditions investigated are Reynolds number range of 27000 ~ 70000( $V_{O}$=3 ~ 8 m/s), nozzle-to-target plate distances H/D=2 ~ 10, and radial distance from the stagnation point r/D ~ = 0 ~ 7.42. For all jet velocities of H/D=2, the local Nusselt number decreased monotonically with increasing radial distance. However, for H/D from 4 to 10, and for the jet velocity $V_{O}$.geq.7 m/s for Cone type nozzle and $V_{O}$.geq.6 m/s for the other type nozzles, the Nusselt number distributions exhibited secondary peaks at r/D=3 ~ 3.5. For Reverse cone type nozzle and Vertical circular nozzle, the maximum stagnation point heat transfer and the maximum average heat transfer occurs at H/D=8. But for the Cone type nozzle, the maximum stagnation and average heat transfer occurs at H/D=10, 4, respectively. From the optimum nozzle-to-target plate distance, the stagnation and the average heat transfer reveal the following ranking: Reverse cone type nozzle, Vertical circular type nozzle, Cone type nozzle.ozzle.

Detailed Measurement of Flow and Heat Transfer Downstream of Rectanglar Vortex Generators Using a Transient Liquid Crystal Technique (과도 액정 기법을 이용한 와동발생기 하류의 유동장 및 열전달 측정)

  • Hong, Cheol-Hyun;Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1618-1629
    • /
    • 2003
  • The effects of the interaction between flow field and heat transfer caused by the longitudinal vortices are experimentally investigated using a five hole probe and a transient liquid crystal technique. The test facility consists of a wind tunnel with vortex generators protruding from a bottom surface and a mesh heater. In order to control the strength of the longitudinal vortices, the angle of attack of vortex generators used in the present experiment is 20$^{\circ}$, and the spacing between the vortex generators is 25mm. The height and cord length of the vortex generator is 20mm and 50mm, respectively. Three-component mean velocity measurements are made using a f-hole probe system, and the surface temperature distribution is measured by the hue capturing method using a transient liquid crystal technique. The transient liquid crystal technique in measuring heat transfer has become one of the most effective ways in determining the full surface distributions of heat transfer coefficients. The key point of this technique is to convert the inlet flow temperature into an exponential temperature profile using the mesh heater set up in the wind tunnel. The conclusions obtained in the present experiment are as follows: The two maximum heat transfer values exist over the whole domain, and as the longitudinal vortices move to the farther downstream region, these peak values show the decreasing trends. These trends are also observed in the experimental results of other researchers to have used the uniform heat flux method.

Characteristics of Alumina-Supported TiO2 Composite Ultrafiltration Membranes Prepared by the Sol-Gel Method (Sol-Gel 법으로 제조한 알루미나 담체의 $TiO_2$ 복합 한외여과막의 특성)

  • 현상훈;최영민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.107-118
    • /
    • 1992
  • Alumina supports for TiO2 ultrafiltration membrane coating were prepared by presintering disk-type preforms at 140$0^{\circ}C$. These supports showed uniform microstructures which had the apparent porosity of 40%, the pore size distribution in the range of 0.1~0.5${\mu}{\textrm}{m}$, and the water flux of 1400ι/$m^2$.h at the pressure difference of 10 atm. The optimum pH and concentration of the TiO2 sol for coating were 0.8 and 1.0 wt%, respectively, and sol particles were identified as rutile forms of 20 nm size. Crack-free alumina-supported rutile TiO2 membranes could be prepared through well controlled drying and heating the gel layer coated by the sol-gel dipping. The pore size of the TiO2 membranes heat-treated at 50$0^{\circ}C$ for 2 hrs was 30~80$\AA$, and their thickness varied from 1.1 to 3.8 ${\mu}{\textrm}{m}$ in accordence with the dipping time (4~40 min). The flux of water through this composite membrane at 10 atm was found to be in the range from 800 to 1100ι/$m^2$.hr depending on the dipping time (10~40 min). The membrane thickness increased linearly with the square root of the dipping time and the slope was 0.62 ${\mu}{\textrm}{m}$/{{{{ SQRT { min} }}.

  • PDF

An Experimental Study on the Burning Characteristics of Working Uniform (작업복의 연소특성에 관한 실험적 연구)

  • Bang Chang-Hoon;Lee Jin-Ho;Kim Byung-Ha
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.46-50
    • /
    • 2005
  • Burning characteristics of working uniform was studied in this paper experimentally. Initial ignition point was classified in three cases that is midpoint of sleeve (Sleeve case), front side midpoint of coat (Center case) and midpoint of trousers (Leg case). The results are as follows· The remained mass ratio was decreased in order of Leg case, Sleeve case, Center case. And the highest average temperature of surface was appeared in order of Sleeve case, Center case, Leg case. Maximum radiant heat flux during burning was appeared high in order of Sleeve case $(0.5\;W/cm^2)$, Center case $(0.45\;W/cm^2)$, Leg case $(0.44\;W/cm^2)$.

Effect of Pressurization and Cooling Rate on Dissolution of a Stationary Supercooled Aqueous Solution (정지상태 수용액에서 가압과 냉각속도가 과냉각해소에 미치는 영향)

  • Kim, Byung-Seon;Peck, Jong-Hyun;Hong, Hi-Ki;Kang, Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.850-856
    • /
    • 2007
  • In a supercooled or capsule type ice storage system, aqueous solution (or water) may have trouble with non-uniform dissolution though the system contributes to the simplicity of system and ecological improvement. The non-uniform dissolution increases the instability of the system because it may cause an ice blockage in pipe or cooling part. In order to observe the supercooled state, a cooling experiment was performed with pressurization to an ethylene glycol(EG) 3 mass% solution in stationary state. Also, the effect of the pressurization from 101 to 505 kPa to the dissolution of supercooled aqueous solution was measured with the dissolution time of the supercooled aqueous solution at a fixed cooling rate of brine. At results, the dissolution of supercooled point decreased as the pressure of the aqueous solution in the vessel increased. Moreover, the dissolution point increased as the heat flux for cooling increased.

Numerical Study of Laminar Flow and Heat Transfer in Curved Pipe Flow (곡관에서의 층류 유동 및 열전달에 관한 수치해석 연구)

  • Kang, Changwoo;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.941-951
    • /
    • 2013
  • A three dimensional numerical simulation of laminar flow and heat transfer in fully developed curved pipe flow has been performed to study the effects of Dean number and pipe curvature on the flow and temperature fields under the thermal boundary condition of axially uniform wall heat flux. The Reynolds number under consideration ranges from 100 to 4000, and the Prandtl number is 0.71. The curvature ratios are 0.01, 0.025, 0.05 and 0.1. The axial velocity and temperature profiles and the local Nusselt number obtained from the present study are in good agreement with the previous numerical and experimental results currently available. To show the effects of pipe curvature on the flow and heat transfer, the resistance coefficients and heat transfer coefficients are computed and compared with the results of the previous theoretical and experimental studies. The averaged Nusselt number is correlated with Dean and Prandtl numbers. Furthermore, the critical Reynolds number for transition to turbulent flow is observed to depend upon the curvature ratio.