• Title/Summary/Keyword: Uniform Stress

Search Result 706, Processing Time 0.027 seconds

A Study on the Optimal Shape Design Using Automatic Regridding and Design Element (자동 격자 생성법과 설계 요소를 이용한 형상 최적 설계에 관한 연구)

  • Kim, Ho-Ryong;Dan, Byung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.87-96
    • /
    • 1993
  • In this study, the peak stress of a fuillet in elastic structure was optimized to have minimum value by using quadratic isoparametric element. The method of auomatic gridding was also developed along with shape algorithm and design element technique was adopted in selecting design variables. The computer program developed was combined with the Hooke-Jeeves direct algorithm of optimization techniques in order to minimize the peak stress of the fillet. The imployment of design element technique significantly cut down computer time by the reduction in design variables, and the opitmum fillet shape with uniform minimum stress was obtained by varying design variables along x and y directions in improving the shape compared to other results. By using automatic gridding, in which Bezier surfaces and Coons surfaces of cubic interpolation were employed, the irregular boundary was removed resulting in smoother anbd more accurate fillet shape possessing uniform minimum stress.

  • PDF

Survey on attitude and preference of the Uniform in preschool students' parents (학부모를 중심으로 한 유아원복에 대한 태도 및 선호연구)

  • You, Kyung-Sook
    • Korean Journal of Human Ecology
    • /
    • v.17 no.2
    • /
    • pp.345-353
    • /
    • 2008
  • This survey intends to understand the opinion and status on preschool students' uniform wearing for the purpose of new style development. The results from this study will serve as an activator of related industry. The merit of uniform wearing in these students was recognized primarily as: (1) students can have pride in the schools they attend; (2) they need not worry about clothes to wear every morning. The disadvantage of uniform wearing derives from: (1) students' personality is hardly expressed by uniforms; (2) difficulty in uniform selection suitable for varying weather conditions. This disadvantage felt by their parents suggests the lack of personality expression and appropriate body temperature control. The most prevalent opinion for preference and future improvement points was the consideration of physical activity in children. This indicates that they prefer uniforms rendering minimal restriction on body movements. Other Improvement points stress the activity, uniform laundering and care, convenience in on and off, insulation, colors, design and durability.

Characteristics of Vertical Stress Distribution in Sandy Soil According to the Relative Compaction and Composition of the Soil Layer (사질토 지반의 상대다짐도 및 토층에 따른 연직지중응력 분포 특성)

  • Nam, Hyo-Seok;Lee, Sang-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.43-50
    • /
    • 2010
  • This study was carried out to evaluate the vertical stress properties in sandy soil according to changes of foundation condition in soil bin compacted three layers. The following conclusions and comparisons have been made based on careful analysis from theoretical and experimental methods. : When sandy soil subjected to circular uniform load, the vertical stress increments ($\Delta\sigma_z$) was increased as load increasing, the maximum values of $\Delta\sigma_z$ was achieved at the point loading axis, and $\Delta\sigma_z$ was not shown over at a distance of three times of loading plate width (B). The vertical stress increments were achieved largely at 80 % relative compaction (Rc) compared to 95 % relative compaction due to stress concentration in sandy soil. When sandy soil subjected to circular uniform load, the $\Delta\sigma_z$ differences between theoretical and experimental values as load increased were more increased and its maximum differences were achieved at stress axis. When gravel surface macadamized over sandy soil subjected to load, the $\Delta\sigma_z$ was concentrated to load axis as load increasing, so that macadamization will be decreased load transmission.

Transient trap density in thin silicon oxides

  • Kang, C.S.;Kim, D.J.;Byun, M.G.;Kim, Y.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.412-417
    • /
    • 2000
  • High electric field stressed trap distributions were investigated in the thin silicon oxide of polycrystalline silicon gate metal oxide semiconductor capacitors. The transient currents associated with the off time of stressed voltage were used to measure the density and distribution of high voltage stress induced traps. The transient currents were due to the discharging of traps generated by high stress voltage in the silicon oxides. The trap distributions were relatively uniform near both cathode and anode interface in polycrystalline silicon gate metal oxide semiconductor devices. The stress generated trap distributions were relatively uniform the order of $10^{11}$~$10^{12}$ [states/eV/$\textrm{cm}^2$] after a stress. The trap densities at the oxide silicon interface after high stress voltages were in the $10^{10}$~$10^{13}$ [states/eV/$\textrm{cm}^2$]. It was appeared that the transient current that flowed when the stress voltages were applied to the oxide was caused by carriers tunneling through the silicon oxide by the high voltage stress generated traps.

  • PDF

The Estimation of Shear Stress in Uniform and Nonuniform Flow by the Entropy Concept (엔트로피 개념을 이용한 개수로에서 등류 및 부등류 흐름의 전단응력 산정)

  • Choo, Yeon Moon;Choo, Tai Ho;Yang, Da Un;Kim, Joong Hoon
    • Journal of Wetlands Research
    • /
    • v.19 no.2
    • /
    • pp.202-210
    • /
    • 2017
  • Shear stress is one of the most important mechanical factors used in various fields and is important for the design of artificial channels. Current shear stresses have been used in the past, but there are factors that are difficult to actually measure or calculate, such as bed shear stress and energy slope in the equation used. In particular, the energy slope is a very difficult factor to estimate, and it is difficult to estimate the slope and flow velocity of the boundary layer although the energy slope can be used to obtain the shear stress distribution. In addition, the bed shear stress among the shear stress distribution is very difficult to measure directly, and the research is somewhat slower than the velocity. In this study, we have studied the simple calculation of the average flow velocity and the shear stress distribution using entropy M without reflecting the energy gradient, and we used existing laboratory data to demonstrate the utility of the applied equation. The stress distribution in the graphs was comparatively analyzed. In the case of the uniform flow and the non-uniform flow, the correlation coefficient was almost identical to 0.930-0.998.

Dielectric Characteristics of Magnetic Tunnel Junction

  • Kim, Hong-Seog
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • To investigate the reliability of the MTJs on the roughness of insulating tunnel barrier, we prepared two MTJs with the different uniformity of barrier thickness. Namely, the one has uniform insulating barrier thickness; the other has non-uniform insulating barrier thickness as compared to different thing. As to depositing amorphous layer CoZrNb under the pinning layer IrMn, we achieved MTJ with uniform barrier thickness. Toinvestigate the reliability of the MTJs dependent on the bottom electrode, time-dependent dielectric breakdown (TDDB) measurements were carried out under constant voltage stress. The Weibull fit of out data shows clearly that $t_{BD}$ scales with the thickness uniformity of MTJs tunnel barrier. Assuming a linear dependence of log($t_{BD}$) on stress voltages, we obtained the lifetime of $10^4$years at a operating voltage of 0.4 V at MTJs comprising CoNbZr layers. This study shows that the reliabilityof new MTJs structure was improved due to the ultra smooth barrier, because the surface roughness of the bottom electrode influenced the uniformity of tunnel barrier.

  • PDF

TRANSIENT THERMOELASTIC STRESS ANALYSIS OF A THIN CIRCULAR PLATE DUE TO UNIFORM INTERNAL HEAT GENERATION

  • GAIKWAD, KISHOR R.;NANER, YOGESH U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2020
  • The present work aims to analyzed the transient thermoelastic stress analysis of a thin circular plate with uniform internal heat generation. Initially, the plate is characterized by a parabolic temperature distribution along the z-direction given by T = T0(r, z) and perfectly insulated at the ends z = 0 and z = h. For times t > 0, the surface r = a is subjected to convection heat transfer with convection coefficient hc and fluid temperature T. The integral transform method used to obtain the analytical solution for temperature, displacement, and thermal stresses. The associated thermoelastic field is analyzed by making use of the temperature and thermoelastic displacement potential function. Numerical results are carried out with the help of computational software PTC Mathcad Prime-3.1 and shown in figures.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Su;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally condrcted by using S-N curves, as specified in the codeds and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02 ). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Sup;Nho, In-Sik
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves, as specified in the codes and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

  • PDF

INFLUENCE OF VARIOUS PROPERTIES OF POST AND CORE ON THE STRESS DISTRIBUTION IN ENDODONTICALLY TREATED TOOTH (다양한 포스트와 코어의 물성이 근관치료된 치근의 응력분산에 미치는 영향)

  • Cho Jin-Hyun;Lee Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.10-19
    • /
    • 2006
  • Statement of problem : The various kinds of properties of post and core may affect the stress distribution to the root of endodontically treated teeth Purpose: To evaluate the influence of various kinds of properties of post and core to the stress distribution to the root of endodontically treated teeth. Material and methods: Mandibular first premolar, prepared by general shape of post and core with gold crown, was used to two dimensional axisymmetric modeling for finite element analysis. Then property values of 8 different kinds of post and core was substituted for each. Finally, stress distribution shown areas around the root of post and core was analysed after applying 50N of vortical and oblique load. Results: 1. Stress value of oblique load was much higher than the maximum stress value of vertical load. 2. Under oblique load, very concentrated stress was located on post periapical area and variations in stress were very severe. Contrary to this, stress distribution was relatively uniform in vertical load. 3. Post materials with higher elastic modulus showed relatively more apically focused stress, and post materials with lower elastic modulus showed stress focused on cervical area on the axial wall of post. 4. Stress change according to the properties of core was shown only in the cervical area of post and below core as the higher elastic modulus, then increased in stress. 5. Post and core with medium value of elastic modulus showed relatively uniform stress distribution. Conclusions: Post materials with higher elastic modulus showed relatively more apically focused stress, and post materials with lower elastic modulus showed stress focused on cervical area on the axial wall of post. Stress change according to the properties of core was shown only in the cervical area of post and below core.