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ABSTRACT. The present work aims to analyzed the transient thermoelastic stress analysis of a
thin circular plate with uniform internal heat generation. Initially, the plate is characterized by
a parabolic temperature distribution along the z-direction given by 7' = Ty(r, z) and perfectly
insulated at the ends z = 0 and z = h. For times ¢ > 0, the surface »r = a is subjected to
convection heat transfer with convection coefficient h. and fluid temperature T,. The integral
transform method used to obtain the analytical solution for temperature, displacement, and ther-
mal stresses. The associated thermoelastic field is analyzed by making use of the temperature
and thermoelastic displacement potential function. Numerical results are carried out with the
help of computational software PTC Mathcad Prime-3.1 and shown in figures.

1. INTRODUCTION

Nowacki [1] has studied the steady-state thermoelastic problem of a thick circular plate sub-
ject to axisymmetric temperature distribution on the upper surface with the lower surface is
kept at zero temperatures and the fixed circular edge is thermally insulated. The direct ther-
moelastic problem of normal deflection due to axisymmetric heat supply on a circular plate in
the case of fixed and simply supported edges have been considered in [2]. The approximate
analytical and the exact solutions of the one-dimensional transient thermoelastic problems of
heat flux and temperature determination on the surface of an isotropic infinite slab presented
in [3]. Theoretical analysis of a three-dimensional transient thermoelastic problem of a non-
homogeneous hollow circular cylinder due to a moving heat source in the axial direction from
the inner and outer surfaces were presented in [4]. The transient thermoelastoplastic bending
problems making use of the strain increment theorem and thermoelastic deformation of the
circular plate due to a partially distributed heat supply was studied in [5]. The transient heat
conduction and analysis of thermal stresses in a thin circular plate subjected to some different
types of boundary conditions were presented in [6]. Some contributions of this theory are given
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in [7, 8,9, 10, 11, 12]. The nonhomogeneous heat conduction problem of a thin hollow circu-
lar disk and its thermal deflection under heat generation was solved in [13]. The thermoelastic
analysis and its deformation of a thin hollow circular disk subject to a partially distributed and
axisymmetric heat supply on the upper surface studied in [14]. Recently, many thermoelastic
problems have been discussed [15, 16, 17, 18, 19, 20].

In this work, a two-dimensional transient thermoelastic problem of a thin circular plate due
to uniform internal heat generation was investigated. Initially, the plate is characterized by a
parabolic temperature distribution along the z-direction given by 7' = Ty(r, z) and perfectly
insulated at the ends z = 0 and z = h. For times ¢t > 0, the surface » = a is subjected to
convection heat transfer with convection coefficient i, and fluid temperature 7»,. The integral
transform method was used to obtain the analytical solution for temperature, displacement,
and thermal stresses. The associated thermoelastic field is analyzed by making use of the
temperature and thermoelastic displacement potential function. Numerical results are carried
out with the help of computational software PTC Mathcad Prime-3.1 and shown in figures. No
work has been carried out so far dealing with a transient thermoelastic stress analysis of a thin
circular plate with uniform internal heat generation to the best of my knowledge.

2. THE PROBLEM FORMULATION AND GOVERNING EQUATIONS

Consider a thin circular plate is depicted as shown in Figure 1. The plate is of radius a and
thickness h and may be considered perfectly insulated at the ends z = 0 and z = h. Initially,
the plate is characterized by a parabolic temperature distribution along the z-direction given by
T = Ty(r, z). For times ¢t > 0, the surface r = a is subjected to convection heat transfer with
convection coefficient h. and fluid temperature T, while the plate is also subjected to uniform
internal energy generation gg (W.m~3). Under these conditions, the thermoelasticity in a thin
circular plate due to uniform internal heat generation is required to be determined.
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Figure 1: Geometry of the problem.
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The unsteady-state temperature of the plate T'(r, z, t) satisfies the following model:

O*T 10T 0°T gy 10T
=+ =" in 0<7r<a, 0<2z<h, t>0 2.1
8r2+7"8r+822+kt S5 m 0<r<a z 2.1

with the boundary conditions,

T(r — 0) = finite 2.2)

T
—kta— =h T — Ty atr =a, t > 0, (2.3)

or

T
O _§  atze0,t>0, (2.4)

0z

T
Iy atz=h t>0, 2.5)

0z

and the initial condition,

T=Ty(r,z) in 0<r<a,0<z<h,t=0. (2.6)

where k; is the thermal conductivity, the thermal diffusivity is defined as &« = k;/pc with p and
c denoting the density and specific heat of the material of the circular plate respectively.

According Roy Choudhary [21], we assume that a circular plate of small thickness A is in
a plane state of stress. In fact “the smaller the thickness of the circular plate compared to its
diameter, the nearer to a plane state of stress is the actual state”. The displacements equations
of thermoelasticity have the form

1 1
Ui ik + v e; =2 v aT';
’ 1—v ’ 1—v

e:Uk,k; ]C,i:1,2

where Uj is the displacements component, e is the dilatation, 7" is the temperature and v and a;
are respectively, the Poisson’s ratio and linear coefficients of thermal expansion of the circular
plate material.

Introducing

U=1v; i=12,
we have
Viv = (1+v)aT
82 82
vie — 4 2
! Ox? * ox3
0ij =2p(Yi; — Si k) 4,0k =1,2,

where (1 is Lamé’s constant and ;5 is the well-known Kronecker delta symbol.
In the axially symmetric case

v =(r, z,t), T = (r,z,1t)
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and the differential equation governing the displacements potential function ¢ (r, z,t) is ex-
pressed as
0% 10
— +-———=(1 AT 2.7
6r2+r87" (1+v)a; 27)
where AT (=T — Tj) is the temperature deviation from the initial temperature 7j.
The stress functions o, and ogg are given by
2u 0
=2V (2.8)
r Or
0%
opg = _Q'MW (2.9)
Initially
T =1 =Ty(r,2) at {=0. (2.10)
Also, in the plane state of stress within the circular plate

Ory =0, =09, =0
ation.

(2.11)
Equations (2.1)-(2.11) constitute the mathematical formulation of the problem under consider-

3. SOLUTION OF THE HEAT CONDUCTION PROBLEM

First we solve the nonhomogeneous boundary conditions by shifting the temperature scale,
letting Y'(r, z,t) = T'(r, 2,t) — Teo, in Egs. (2.1)-(2.6), the new formulation as follows
9*r 19T 9T gy 19T

or?2 ror

022 "k aot’
with the boundary conditions,

in 0<r<a, 0<z<h,t>0

3.1
T (r — 0) = finite
oY
—ki— =h.T atr =a,t >0

or

ﬁ =0 atz=0,t>0

0z

a—T =0 atz=~h,t>0

0z

and the initial condition,

YT=Ty(r,z2) —Toe in 0<7r<a, 0<z<h,t=0.
We reduce Eq. (3.1) to the homogeneous PDE and a nonhomogeneous ODE by defining a
new dependent variable Y (7, z, t) is defined as
Y(r,z,t) = ¥(r,z,t) + O(r)

where W(r, z,t) takes the homogeneous form of the PDE and ®(r) corresponds to the one-
dimensional nonhomogeneous ODE, containing the energy generation term.
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The formulation of the nonhomogeneous ®(r) problem becomes

d*® 1d® g,
e0 i <r< 3.2
72 rdr+kt 0, in 0<r<a (3.2)

with the boundary conditions,
®(r — 0) = finite

dd
Ydr
The solution of Eq. (3.2) becomes

=h.P atr = a,

The formulation of W(r, z, t) transient problem becomes
0*v L1 10¥ N 82\11 19%(r,t)
a2 ror 922 o ot

with the boundary conditions,

0<r<a,0<z<h, t>0 (3.3)

U(r — 0) = finite (3.4)

1
—k‘ta =h. U atr =a,t >0, (3.5)

or

ov
— =0 atz=0, t >0, (3.6)

0z

ov
— =0 atz=nh,t>0, (3.7

0z

and the initial condition,

U ="Tyrz)—Te —P(r)=H(r,z) in 0<r<a,0<z<h,t=0. (3.8)

To obtain the expression of the function ¥(r, z,t), following [23], we develop the finite
Fourier transform and finite Hankel transform and their respective inverses and operate them
on Egs. (3.3)-(3.8):

U(r, z,t) ( > Z Z Jo(Bmr) cos 77p2) e “(BETJF"g)t-ﬁ[(ﬁmﬂ?p)

m=1 p=1
where N
B = [ [ o Blnr’) costnys') HO', ) dr’
2/=0Jr'=0
and
12 m
N(Bm) — J5(Bma) (:j - ﬁ%) —
t
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and 1, B2, B3, ... are the positive root of transcendental equation

_BmJl (/Bma) + ht JO(Bma)

k
and 71,12, 13, . .. are the positive roots of the transcendental equation
sin(n,h) =0, p=1,2,3,....

Finally, the temperature distribution is the sum of the homogeneous transient solution W (r, z, t)
and the nonhomogeneous, steady-state solution ®(r), with the additional re-shifting of temper-
ature by T,

Jo(Bmr) cos 77p ) —o(B2 AR f ago |, 8o 2

120 =Tt (7)Y > ; D G ) + 20 + £ (2 = )
(3.9
3.1. Special Case. Setting, Ty(r,2) = Tw in Eq. (3.9), one obtains the expression of the

temperature distribution function as

T(r,2t) = Ty + < ) Z Z Jo(Bmr) cos 77p ) a(ﬁfn+n§)t'ﬁ(ﬂm7np) ;‘%lo f}s (a2 — 12
t

(3.10)

m=1 p=1

The temperature is represented in the following form:

( > ZZ JO er COS npz) —a(ﬁ,zn-i-np)t (6 s 1) p)_{_ﬁ_{_&(a _7=2)

oo 2h. 4k
(3.11)
4. DISPLACEMENT POTENTIAL FUNCTION AND THERMAL STRESSES

Using Eq. (3.11) in Eq. (2.7), one obtains

0% 10y Jo(Bmr) cos np ) —a(B 42t

W_‘_;E:(l ( ) ZZ “ T (Bmﬂ?p)

m=1p=1
ago , &o 2
2he | Ak (@ ~r )]
4.1)
Solving Eq. (4.1), by using the result,
9% 190
(55 + 27 ) o) = =BT
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one obtains,

< ) > Z Jo éqg?v COS(1p2) (=a(B -+t fr (B, m)

m=1p=1 4.2)
agor £o 2.2 4
20y —
T she 6k T T)}

Using Eq. (4.2) in Egs. (2.8) and (2.9), one obtains the expressions of thermal stresses as

7o (S et

m=1p=1 (43)
ago go 2 2
4hc m(2a r ):|
2> 2 = < Jl(ﬁrrﬂ")) cos(Mp2) (g2 +n2)t 7
— Jo(Bmr) — .e m ) H (B, )
agg 2o 2 9.2
The T T6ky 20 T )}

where X and Y are the constants and set for convenience, as

X =—-(1+v)a, Y = -2(1+v)arpu.

5. NUMERICAL RESULTS AND DISCUSSION

5.1. Dimensions. The constants associated with the numerical calculation are taken as:
Radius of a circular plate a = 1 m,
Thickness of a circular plate & = 0.1 m.

5.2. Material Properties. The copper material was chosen for purposes of numerical evalua-
tions. The parameters of the problem are thus given in SI units by [24]:

Table 1: Material Constants

p = 8954 kg/m? a = 112.34(10) 75 m?/s k: = 386 W/(m K)
E = 128 Gpa cp =383 J/(kg K) a; =16.5(10)"6 K1
v =035 p=26.67 go= 1(10%) W/m?3
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5.3. Roots of the Transcendental Equations. The first five positive root of the transcendental

h
equation S, J1(Bma) — %Jo(ﬁma) = 0 as defined in [23] are 81 = 3.8317, f2 = 7.0156,

B3 = 10.1735, B4 = 13.3237, B = 16.470 and n; = 6.28, 2 = 12.56, n3 = 18.84,
na = 25.12, 5 = 31.40 are positive roots of the transcendental equation sin(n,h) = 0. The
numerical calculations and graphs are plotted with the help of computational mathematical
software PTC Mathcad Prime-3.1.

In this paper, a thin circular plate is considered and determined the expressions for tempera-
ture change, displacements, and stress functions due to the internal heat generation at a constant
rate. As a special case Ty(r, z) = T, the mathematical model is constructed for copper ma-
terial and performed numerical calculations. The thermoelasticbehaviour is examined such as
temperature change, displacements, and stresses with different time parameters under internal
heat generation at a constant rate. The obtained expressions for the temperature, displacement
and thermal stresses provide important intuition into the role of the thermomechanical material
properties in elastic behaviors of the thin circular plate under the internal energy generation
at a constant rate. The temperature distribution in the plate is only dependent on its thermal
properties, on the other hand, the plate displacement and stresses are dependent on both ther-
mal and mechanical properties. We have used the first 50 terms (p=1-50) for the inner series
summation, as given by Eq. (3.10), and have used the first 10 terms (m=1-10) of the outer
series summation to achieve greater accuracy.

Figure 2 shows the variation of the temperature distribution along the radial direction for
different values of time ¢ = 50, 100, ..., 250 s. It is assumed that, the initial temperature of
the plate is To(r, 2z) = 0 with the rate of internal energy generation is 1 x 10*. We observed
that, near the centreline (r ~ 0), the temperature is increasing primarily due to the internal
heat generation at a constant rate and when the radii increase the temperature starts decreasing
towards the outer circular edge (r=1) for different times.

Figure 3 shows the variation of the displacement potential function along the radial direction
for different values of time ¢ = 50, 100, ..., 250 s. It is clear that the displacement is maximum
at the center (r = 0) due to the internal heat generation at a constant rate and when the radii
increase the displacement starts decreasing towards the outer circular edge (r = 1) for different
times. Also from the figures of temperature and displacement, we observed that the direction
of heat flow and the direction of body displacement are the same and are proportionate to each
other.

Figure 4 shows the variation of radial stress along the radial direction for different values of
time ¢ = 50, 100, ..., 250 s. It is observed that the radial stress increases with increasing the
radii and its maximum towards the outer circular edge (r = 1). It develops the tensile stresses
in a radial direction.

Figure 5 shows the variation of axial stress along the radial direction with different time
parameters. It is observed that the axial stress is maximum at the center (r = 0) due to the
internal heat generation at a constant rate and when the radii increase the axial stress starts
decreasing towards the outer circular edge (r = 1) for different times.
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6. CONCLUDING REMARKS

In this article, we analyzed a two-dimensional transient thermoelastic problem of a thin
circular plate under uniform internal heat generation at a constant rate and investigates the
temperature, displacement, and stresses. The upper and lower surfaces are thermally insulated,
while the perimetric surface is characterized by parabolic temperature distribution along the
z-direction given by T' = Ty(r, z). The mathematical model is constructed for copper material
and an integral transform technique was used to obtain the analytical solution for temperature,
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displacement, and thermal stresses. The method used in this study provides a quite successful
approach in dealing with transient thermoelastic stress analysis.
The results of the present work can be summarized as:

(1) The converging of the series summation is rapid for large time.

(2) The rate of temperature increase near the centerline (r ~ 0), at very early times due to
internal energy generation at a constant rate.

(3) From the figures of the temperature and displacement, we observe that the direction of
heat flow and the direction of body displacement are the same and are proportionate to
each other.

(4) The stress components and displacement occur near the heated region.

The results presented here will be useful in engineering problems, particularly in aerospace
engineering for stations of a missile body not influenced by nose tapering. Also, any particular
case of special interest can be derived by assigning suitable values to the parameters and func-
tions in the expressions (3.10)-(4.4).
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