• 제목/요약/키워드: Uniform Heat Generation

검색결과 39건 처리시간 0.023초

Experimental study of bubble flow behavior during flow instability under uniform and non-uniform transverse heat distribution

  • Al-Yahia, Omar S.;Yoon, Ho Joon;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2771-2788
    • /
    • 2020
  • Experiments are conducted to study bubble flow behavior during the instability of subcooled boiling under uniform and non-uniform transverse heating. The non-uniform heat distribution introduces nonuniform bubble generation and condensation rates on the heated surface, which is different from the uniform heating. These bubble generation and condensation characteristics introduce a non-uniform local pressure distribution in the transverse direction, which creates an extra non-uniform pressure on the flowing bubbles. Therefore, different bubble flow behavior can be observed between uniform and non-uniform heating conditions. In the uniform heating, bubble velocity fluctuations are low, and the bubbles travel straight along the axial direction. In the non-uniform heating, more fluctuation in the bubble velocity occurs at low mass flow rate and high subcooled inlet temperatures, and reverse flow is observed. Additionally, the bubbles show a zigzag trajectory when they pass through the channel, which indicates the existence of cross flow in the transverse direction.

TRANSIENT THERMOELASTIC STRESS ANALYSIS OF A THIN CIRCULAR PLATE DUE TO UNIFORM INTERNAL HEAT GENERATION

  • GAIKWAD, KISHOR R.;NANER, YOGESH U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권3호
    • /
    • pp.293-303
    • /
    • 2020
  • The present work aims to analyzed the transient thermoelastic stress analysis of a thin circular plate with uniform internal heat generation. Initially, the plate is characterized by a parabolic temperature distribution along the z-direction given by T = T0(r, z) and perfectly insulated at the ends z = 0 and z = h. For times t > 0, the surface r = a is subjected to convection heat transfer with convection coefficient hc and fluid temperature T. The integral transform method used to obtain the analytical solution for temperature, displacement, and thermal stresses. The associated thermoelastic field is analyzed by making use of the temperature and thermoelastic displacement potential function. Numerical results are carried out with the help of computational software PTC Mathcad Prime-3.1 and shown in figures.

원관 주위의 대류 열전달에서 경계조건에 대한 원주방향 열전도의 영향 (Effect of Circumferential Wall Heat Conduction on Boundary Conditions for Convection Heat Transfer from a Circular Tube in Cross Flow)

  • 이상봉;이억수;김시영
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.39-45
    • /
    • 2001
  • With uniform heat generation from the inner surface of the cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer is investigated for the case of forced convection around horizontal circular tube in cross flow of air. The wall conduction number which can be deduced from the governing energy equation should be used to express the effect of circumferential wall heat conduction. It is demonstrated that the circumferential wall heat conduction influences local Nusselt numbers of one-dimensional and two-dimensional solutions.

  • PDF

초정밀 가열판의 온도 균질화를 위한 새로운 설계방법 (New Design Approach for the Uniform Temperature of Precision Hot Plates)

  • 박용환
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1525-1533
    • /
    • 2003
  • In the precision hot plate for wafer processing, uniform temperature of the upper plate is one of key factors affecting the quality of wafers. The state-of-the-art precision hot plates require temperature Variations less than $\pm$0.4$^{\circ}C$ during heating to 15$0^{\circ}C$, Which is difficult to be obtained only by the improvement of manufacturing techniques alone. In this study, computer aided heat transfer analysis was carried out to obtain the temperature distribution of the currently used reference hot plate for 200mm wafer. The analysis on the reference model assuming constant heat generation rate and uniform heating area showed total variation of 0.926$^{\circ}C$ at 15$0^{\circ}C$. One of the new design approaches based on the change of heating location together with different heat generation rate resulted in total variation of 0.297$^{\circ}C$ which is a 68% improvement compared to that of the reference model.

Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed Laminar Convection with Constant Wall Heat Flux

  • Haghgooyan, M.S.;Aghanajafi, C.
    • Korean Chemical Engineering Research
    • /
    • 제52권3호
    • /
    • pp.294-301
    • /
    • 2014
  • This study focuses on analysis and comparison of entropy generation in various cross-sectional ducts along with fully developed laminar flow and constant uniform wall heat flux. The obtained results were compared in ducts with circular, semicircular, and rectangular with semicircular ends, equilateral triangular, and square and symmetrical hexagonal cross-sectional areas. These results were separately studied for aspect ratio of different rectangular shapes. Characteristics of fluid were considered at average temperature between outlet and inlet ducts. Results showed that factors such as Reynolds number, cross section, hydraulic diameter, heat flux and aspect ratio were effective on entropy generation, and these effects are more evident than heat flux and occur more in high heat fluxes. Considering the performed comparisons, it seems that semicircular and circular cross section generates less entropy than other cross sections.

원관 주위의 대류 열전달에 대한 복합 열전달 (Conjugated heat transfer on convection heat transfer from a circular tube in cross flow)

  • 이승홍;이억수;정은행
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.523-534
    • /
    • 1998
  • The convection heat transfer on horizontal circular tube is studied as a conjugated heat transfer problem. With uniform heat generation in a cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer are investigated for the case of forced convection around horizontal circular tube in cross flow of air and water. Non-dimensional conjugation parameter $ K^*$ which can be deduced from the governing energy differential equation should be used to express the effect of circumferential wall heat conduction. Two-dimensional temperature distribution$ T({\gamma,\theta})$ is presented. The influence of circumferential wall heat conduction is demonstrated on graph of local Nusselt number.

  • PDF

딤플형 돌출물이 부착된 판형 열교환기의 관내측 열유동 해석 (The thermal and flow analysis in the channel of plate heat exchanger with dimples)

  • 이관수;정제원;백창인
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.122-130
    • /
    • 1998
  • The present work analyzes the pressure drop and heat transfer characteristics of the plate heat exchanger with staggered dimples. The flow is assumed to be constant property, three dimensional and laminar. A thermal boundary condition is uniform wall temperature and it is assumed that the flow is periodically fully developed. Elliptic grid generation is used for proper modelling of the internal tube geometry with dimples. Computations have been carried out for a variety of geometric parameters, Reynolds number, and Prandtl number. The friction factor ratio and the ratio of a module average Nusselt number are presented for the cases considered in this study. It is found that the distance between dimples has a substantial effect on the pressure drop and heat transfer.

Investigation of I-V characteristics and heat generation of multiply connected HTS conductors in parallel

  • Park, H.C.;Kim, S.;Cho, J.;Sohn, M.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권2호
    • /
    • pp.20-23
    • /
    • 2012
  • With continuous development of the 2nd generation HTS conductor, the critical current of the conductor is also increasing. However, many applications require more than 2 conductors in parallel to transport large current. Applications such as HTS power cables and some HTS current leads usually need much larger transport current than that provided by a single conductor and they require more than several tens of HTS conductors. In the case of parallel connection of multiple HTS conductors, the current distribution depends on the contact resistance of each conductor at the terminals for DC operation. The non-uniform distribution of the terminal resistances results in a non-uniform distribution of the current. The resultant current non-uniformity affects on the measurement of the I-V curve and the thermal performance of the multiple conductors. This paper describes the I-V curves obtained from multiply connected HTS conductors with different terminal contact resistances to investigate the relationship between the distorted I-V curve and heat generation.

솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석 (The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model)

  • 강상욱;김창진;이대희;김흥섭
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

소규모 산업 폐열회수용 열전발전시스템의 출력 특성에 관한 실험적 연구 (Experimental Study of Power Generation Performance of Small-Scale Thermoelectric System)

  • 정재훈;김우철;이진호;유태우
    • 대한기계학회논문집B
    • /
    • 제34권4호
    • /
    • pp.383-390
    • /
    • 2010
  • 본 연구에서는 폐열 회수를 위한 열전 발전 시스템을 구성하였다. 열전 모듈은 스테인레스 스틸덕트 내부에 부착되고, 뜨거운 공기를 불어넣는 장치가 덕트의 입구에 마주한 형태를 취하였다. 이 때 고온부의 온도가 균일한 상태에서 낼 수 있는 최대 파워를 구해내었다. 결과적으로 모듈에 가해지는 최적화된 압력이 있었다. 또한 열전 발전의 성능을 열전 모듈의 저온부의 열 싱크에 의하여 결정되었다. 자연대류 형식의 열 싱크에서 낼 수 있는 파워가 5배 가량 차이가 났다.