• 제목/요약/키워드: Uniform Components

검색결과 325건 처리시간 0.021초

Physical Properties of Indium Reduced Materials for Transparent Conductive Electrodes

  • Kwak, Seung-Hoon;Kwak, Min-Gi;Hong, Sung-Jei;Ju, Byeong-Kwon;Han, Jeong In
    • Current Photovoltaic Research
    • /
    • 제2권1호
    • /
    • pp.14-17
    • /
    • 2014
  • In this paper, indium reduced materials for transparent conductive electrodes (TCE) were fabricated and their physical properties were evaluated. Two of materials, indium-zinc-tin oxide (IZTO) and aluminum (Al) were selected as TCE materials. In case of IZTO nanoparticles, composition ratios of In, Zn and Sn is 8:1:1 were synthesized. Size of the synthesized IZTO nanoparticles were less than 10 nm, and specific surface areas were about $90m^2/g$ indicating particle sizes are very fine. Also, the IZTO nanoparticles were well crystallized with (222) preferred orientation despite it was synthesized at the lowered temperature of $300^{\circ}C$. Composition ratios of In, Zn and Sn were very uniform in accordance with those as designed. Meanwhile, Al was deposited onto glass by sputtering in a vacuum chamber for mesh architecture. The Al was well deposited onto the glass, and no pore was observed from the Al surface. The sheet resistance of Al on glass was about $0.3{\Omega}/{\square}$ with small deviation of $0.025{\Omega}/{\square}$, and adhesion was good on the glass substrate since no pelt-off part of Al was observed by tape test. If the Al mesh is combined with ink coated layer which is consistent of IZTO nanoparticles, it is expected that the good and reliable metal mesh architecture for TCE will be formed.

다수의 균일발열부품이 접촉된 광대역 회선분배 시스템 냉각용 히트파이프 시스템의 비정상 동작특성에 관한 수치적 연구 (Numerical study on the transient operation characteristics of the heat pipe cooling system with the multiple uniform heating components for broadband digital cross-connect system)

  • 노홍구;이재헌
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.734-749
    • /
    • 1998
  • A numerical study t predict the characteristics on transient operation of the heat pipe cooling system with multiple heaters for electronic system has been performed. The heat pipe cooling system of 45 cm length and 16 mm diameter was composed of evaporator section with four heaters which simulate electronic components, insulated transport section, and condenser section with a conductor which was cooled under the constant heat flux boundary condition. Two test cases were investigated in present study; Case 1 indicated that the 1st and 2nd heaters among four heaters were heated off, while the 3rd and the 4th heaters were heated on. Case 2 was the inverse situation switched from heating locations of Case 1. Case 3 indicated that the 1st and 4th heaters among four heaters were heated off, while the 2nd and 3rd heaters were heated on. The results showed that the transient time to reach the steady state is shorter for Case 1 than for Case 2. Especially, the maximum temperature among the heaters which simulate electronic components during switching operation is relatively small compared to the maximum allowable operating temperature in electronic system. It is concluded that the heat pipe cooling system in present study operate with the good thermal reliability even for sudden switching situation of the heaters.

Size Distribution Characteristics of Particulate Mass and Ion Components at Gosan, Korea from 2002 to 2003

  • Han J.S.;Moon K.J.;Lee S.J.;Kim J.E.;Kim Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제21권E1호
    • /
    • pp.23-35
    • /
    • 2005
  • Size distribution of particulate water-soluble ion components was measured at Gosan, Korea using a micro-orifice uniform deposit impactor (MOUDI). Sulfate, ammonium, and nitrate showed peaks in three size ranges; Sulfate and ammonium were of dominant species measured in the fine mode ($D_{p} < 1.8 {\mu}m$). One peak was observed in the condensation mode ($0.218\sim0.532{\mu}m$), and the other peak was obtained in the droplet mode ($0.532\sim1.8{\mu}m$). Considering the fact that the equivalent ratios of ammonium to sulfate ranged from 0.5 to 1.0 in these size ranges, it is inferred that they formed sufficiently neutralized compounds such as ($NH_{4})_{2}SO_{4} and (NH_{4})_{3}H(SO_{4})_{2}$ during the long-range transport of anthropogenic pollutants. On the other hand, nitrate was distributed mainly in the coarse mode ($3.1\sim6.2{\mu}m$) combined with soil and sea salt. Two sets of MOUDI samples were collected in each season. One sample was collected when the concentrations of criteria air pollutants were relatively high, but the other represented relatively clean air quality. The concentrations of sulfate and ammonium particles in droplet mode were the highest in winter and the lowest in summer. When the air quality was bad, the increase of nitrate was observed in the condensation mode ($0.218\sim0.282{\mu}m$). It thus suggests that the nitrate particles were produced through gas phase reaction of nitric acid with ammonia. Chloride depletion was remarkably high in summer due to the high temperature and relative humidity.

대전방지용 Al2O3-SiC 복합세라믹 소결체의 제조 및 특성 (Fabrication and Characterisitics of Al2O3-SiC Ceramic Composites for Electrostatic Discharge Safe Components)

  • 김하늘;오현명;박영조;고재웅;이현권
    • 한국분말재료학회지
    • /
    • 제25권2호
    • /
    • pp.144-150
    • /
    • 2018
  • $Al_2O_3-SiC$ ceramic composites are produced using pressureless sintering, and their plasma resistance, electrical resistance, and mechanical properties are evaluated to confirm their applicability as electrostatic-discharge-safe components for semiconductor devices. Through the addition of Mg and Y nitrate sintering aids, it is confirmed that even if SiC content exceeded 10%, complete densification is possible by pressureless sintering. By the uniform distribution of SiC, the total grain growth is suppressed to about $1{\mu}m$; thus an $Al_2O_3-SiC$ sintered body with a high strength over 600 MPa is obtained. The optimum amount of SiC to satisfy all the desired properties of electrostatic-discharge-safe ceramic components is obtained by finding the correlation between the plasma resistance and the electrical resistivity as a function of SiC amount.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

셀룰로오스를 이용한 전도성 체이스트의 개발 (Novel Conductive Paste based on Cellulose Acetate Butyrate)

  • 김태현
    • 대한화학회지
    • /
    • 제51권2호
    • /
    • pp.171-177
    • /
    • 2007
  • 고분자를 바탕으로 한 전도성 페이스트는 전원과 기기를 연결하는 전도 통로를 제공하여 준다. 이러한 전도성 페이스트는 고분자 바인더와 전도성 금속의 두 부분으로 이루어져 있다. 본 연구에서는 낮은 점도와 우수한 금속 피막성을 가지는 셀룰로오스 아세테이트 부타이레이트를 바인더로 사용하여 새로운 전도성 페이스트를 개발하였다. 전도도 측정 결과 안정된 전도도를 보였을 뿐 아니라, 균일한 코팅성과 유연성을 나타내었다.

Numerical Simulation of the Elastic Moduli of Cement Paste As a Three Dimensional Unit Cell

  • Park, Ki-Bong
    • Architectural research
    • /
    • 제12권2호
    • /
    • pp.93-98
    • /
    • 2010
  • This paper describes a numerical method for estimating the elastic moduli of cement paste. The cement paste is modeled as a unit cell which consists of three components: the unhydrated cement grain, the gel, and the capillary pore. In the unit cell, the volume fractions of the constituents are quantified using a single kinetic function calculating the degree of hydration. The elastic moduli of cement paste are calculated from the total displacements of constituents when a uniform pressure is applied to the gel contact area. The cement paste is assumed to be a homogenous isotropic matrix. Numerical simulations were conducted through the finite element analysis of the three-dimensional periodic unit cell. The model predictions are compared with experimental results. The predicted trends are in good agreement with experimental observations. This approach and some of the results might also be relevant for other technical applications.

Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fatima, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.85-107
    • /
    • 2020
  • Dynamic responses of porous piezoelectric and metal foam nano-size plates have been examined via a four variables plate formulation. Diverse pore dispersions named uniform, symmetric and asymmetric have been selected. The piezoelectric nano-size plate is subjected to an external electrical voltage. Nonlocal strain gradient theory (NSGT) which includes two scale factors has been utilized to provide size-dependent model of foam nanoplate. The presented plate formulation verifies the shear deformations impacts and it gives fewer number of field components compared to first-order plate model. Hamilton's principle has been utilized for deriving the governing equations. Achieved results by differential quadrature (DQ) method have been verified with those reported in previous studies. The influences of nonlocal factor, strain gradients, electrical voltage, dynamical load frequency and pore type on forced responses of metal and piezoelectric foam nano-size plates have been researched.

전단 스피닝에 의한 원추형상의 성형에 관한 변형 메커니즘 (New Deformation Mechanism in the Forming of Cones by Shear Spinning)

  • 김재훈;김철
    • 소성∙가공
    • /
    • 제14권4호
    • /
    • pp.375-383
    • /
    • 2005
  • The shear spinning process, where the plastic deformation zone is localized in a very small portion of the workpiece, shows a promise for increasingly broader application to the production of axially symmetric parts. In this paper, the three components of the working force are calculated by a newly proposed deformation model in which the spinning process is understood as shearing deformation after uniaxial yielding by bending, and shear stress, $\tau_{rz}$, becomes k, yield limit in pure shear, in the deformation zone. The tangential force are first calculated and the feed force and the normal force are obtained by the assumption of uniform distribution of roller pressure on the contact surface. The optimum contact area is obtained by minimizing the bending energy required to get the assumed deformation of the blank. The calculated forces are compared with experimental results. A comparison shows that theoretical prediction is reasonably in good agreement with experimental results

티타늄디스크 근사정형 열간단조시 금형속도의 최적화 (Die-Speed Optimization in Titanium-Disk Near-Net Shape Hot-Forging)

  • 박종진
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.896-907
    • /
    • 1995
  • Titanium 6242(.alpha. + .betha.) alloy has a good strength/weight ratio and is used for aircraft components such as engine disks and compressor blades. When this material is forged at an elevated temperature, the process parameters should be carefully controlled because the process window of this material is quite narrow. In the present investigation, a rigid-thermoviscoplastic finite element method is used to predict the deformation behavior and temperature/strain distributions in an engine disk during near-net shape hot forging. The purpose of the investigation is to obtain a proper ram speed profile, assuming the hydraulic press used in the forging is capable of varying ram speed during loading. In result, it was found that the ram speed at constant strain-rate of 0.5/sec shows a sound deformation behavior, a relatively uniform deformation and a good temperature distribution. This information is also valuable in predicting resulting microstructures in the disk.