DOI QR코드

DOI QR Code

Fabrication and Characterisitics of Al2O3-SiC Ceramic Composites for Electrostatic Discharge Safe Components

대전방지용 Al2O3-SiC 복합세라믹 소결체의 제조 및 특성

  • Kim, Ha-Neul (Engineering Ceramics Research group, Korea Institute of Materials Science) ;
  • Oh, Hyun-Myung (Engineering Ceramics Research group, Korea Institute of Materials Science) ;
  • Park, Young-Jo (Engineering Ceramics Research group, Korea Institute of Materials Science) ;
  • Ko, Jae-Woong (Engineering Ceramics Research group, Korea Institute of Materials Science) ;
  • Lee, Hyun-Kwuon (Department of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 김하늘 (한국기계연구원 부설 재료연구소 엔지니어링세라믹연구실) ;
  • 오현명 (한국기계연구원 부설 재료연구소 엔지니어링세라믹연구실) ;
  • 박영조 (한국기계연구원 부설 재료연구소 엔지니어링세라믹연구실) ;
  • 고재웅 (한국기계연구원 부설 재료연구소 엔지니어링세라믹연구실) ;
  • 이현권 (금오공과대학교 신소재공학부)
  • Received : 2018.04.09
  • Accepted : 2018.04.23
  • Published : 2018.04.28

Abstract

$Al_2O_3-SiC$ ceramic composites are produced using pressureless sintering, and their plasma resistance, electrical resistance, and mechanical properties are evaluated to confirm their applicability as electrostatic-discharge-safe components for semiconductor devices. Through the addition of Mg and Y nitrate sintering aids, it is confirmed that even if SiC content exceeded 10%, complete densification is possible by pressureless sintering. By the uniform distribution of SiC, the total grain growth is suppressed to about $1{\mu}m$; thus an $Al_2O_3-SiC$ sintered body with a high strength over 600 MPa is obtained. The optimum amount of SiC to satisfy all the desired properties of electrostatic-discharge-safe ceramic components is obtained by finding the correlation between the plasma resistance and the electrical resistivity as a function of SiC amount.

Keywords

References

  1. D.M. Kim, S.Y. Yoon, K.B. Kim, H.S. Kim, Y.S. Oh and S.M. Lee: J. Kor. Ceram. Soc., 45 (2008) 707. https://doi.org/10.4191/KCERS.2008.45.1.707
  2. K.B. Kim, D.M. Kim, J.K. Lee, Y.S. Oh, H.T. Kim, H.S. Kim and S.M. Lee: J. Korean Ceram. Soc., 46 (2009) 456. https://doi.org/10.4191/KCERS.2009.46.5.456
  3. H.K. Lee, K.S. Cho and M.Y. Kim: J. Korean. Ceram. Soc., 46 (2009) 385. https://doi.org/10.4191/KCERS.2009.46.4.385
  4. D.M. Kim, S.M. Lee, S.W. Kim, H.T. Kim and Y.S. Oh: J. Korean. Ceram. Soc., 45 (2008) 405. https://doi.org/10.4191/KCERS.2008.45.7.405
  5. M. Mitomo, Y. Sato, I. Yashima, M. Tsutsumi: J. Mater. Sci. Lett. 10 (1990) 83.
  6. J. Iwasawa, R. Nishimizu, M. Tokita and M. Kiyohara: J. Am. Ceram. Soc., 90 (2007) 2327. https://doi.org/10.1111/j.1551-2916.2007.01738.x
  7. J.H. Jeong and D.S. Woo: J. Korea Acad. Industr. Coop. Soc., 19 (2018) 603.
  8. O.H. Kwon, C. Coureau, R.A. Gorski and M.A. Simpson: USA, US 8516857 (2013)
  9. C.C. Anya: J. Mater. Sci., 34 (1999) 5557. https://doi.org/10.1023/A:1004729015686
  10. Y.K. Jeong, A. Nakahira and K. Niihara: J. Am. Ceram. Soc., 82 (1999) 3609.
  11. C.C. Anya and S.G. Roberts: J. Eur. Ceram. Soc., 17 (1997) 565. https://doi.org/10.1016/S0955-2219(96)00092-1
  12. S. Gustafsson, L.K.L. Falk, E. Liden and E. Carlstrom: Ceram. Int., 34 (2008) 1609. https://doi.org/10.1016/j.ceramint.2007.05.005
  13. H.Z. Wang, L. Gao and L.K Guo: Ceram. Int., 26 (2000) 391. https://doi.org/10.1016/S0272-8842(99)00069-3
  14. H. Reveron, O. Zaafrani and G. Fantozzi: J. Eur. Ceram. Soc., 30 (2010) 1351. https://doi.org/10.1016/j.jeurceramsoc.2009.12.008
  15. A. Sawaguchi, K. Toda and K. Niihara: J. Ceram. Soc. Jpn., 99 (1991) 523. https://doi.org/10.2109/jcersj.99.523
  16. M. Parchoviansky, D. Galusek, P. Svancarek, J. Sedlacek and P. Sajgalik: Ceram. Int., 40 (2014) 14421. https://doi.org/10.1016/j.ceramint.2014.06.038
  17. J. Sedlacek, D. Galusek, R. Riedel and M.J. Hoffmann: Mater. Lett., 65 (2011) 2462. https://doi.org/10.1016/j.matlet.2011.04.094
  18. A. Borrell, I. Alvarez, R. Torrecillas, V.G. Rocha and A. Fernandez: Mater. Sci. Eng., A 534 (2012) 693. https://doi.org/10.1016/j.msea.2011.12.032
  19. C.E. Borsa, H.S. Ferreira and R.H.G.A. Kiminami: J. Eur. Ceram. Soc., 19 (1999) 615. https://doi.org/10.1016/S0955-2219(98)00252-0
  20. S. Rasouli, E. Taheri-Nassaj and S.A. Hassanzadeh- Tabrizi: Ceram. Int., 39 (2013) 3931. https://doi.org/10.1016/j.ceramint.2012.10.240
  21. J.Y. Kim, T. Iseki and T. Yano: J. Ceram. Soc. Jpn., 105 (1997) 837. https://doi.org/10.2109/jcersj.105.837
  22. N. Hidaka and Y. Hirata: Colloidal ceramic processing of Nano-,micro-, and macro-particulate systems, Wiley & Sons, Inc. (2012) 101.
  23. V. Heera, D. Panknin and W. Skorupa: Appl. Surf. Sci., 184 (2001) 307. https://doi.org/10.1016/S0169-4332(01)00510-4
  24. A. Sawaguch, K. Toda and K. Niihara: J. Am. Ceram. Soc., 74 (1991) 1142. https://doi.org/10.1111/j.1151-2916.1991.tb04357.x
  25. M.R. Jang, Y.K. Paek and S.M. Lee: J. Kor. Ceram. Soc., 49 (2012) 328. https://doi.org/10.4191/kcers.2012.49.4.328
  26. C.P. Dogan and J.A. Hawk: Wear 250 (2001) 256. https://doi.org/10.1016/S0043-1648(01)00649-4