• Title/Summary/Keyword: Unified pulse width modulation

Search Result 7, Processing Time 0.019 seconds

A family of Continuous Conduction Mode with Quasi Steady State Approach based on the General Pulse Width Modulator

  • Ala Eldin Abdallah;Khalifa Eltayed
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.369-372
    • /
    • 2002
  • This paper presents a family of continuous conduction mode with constant-switching pulse width modulator controllers. Unified implementation of quasi steady state approach for various DC-DC converters topoiogies is illustrated. The property and control low for quasi-state approach will be discussed in this paper. The different procedures will be discussed in details with different results for five commonly used DC-DC converters. Both trailing and leading edge pulse width modulation are used. Leading edge modulation can some times lead to simpler control circuitry as will be demonstrated in some circuits. These controllers do not require the multiplier in the voltage feed back loop, error amplifier in the current loop and rectified line voltage sensor, which are needed by traditional control methods. Controller examples and design arc analyzed.

  • PDF

A Unified Carrier Based PWM Method In Multilevel Inverters

  • Nho Nguyen Van;Youn Myung Joong
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.142-150
    • /
    • 2005
  • This paper presents a systematic approach to study the carrier based pulse width modulation (PWM) techniques applied to diode-clamped and cascade multilevel inverters by using multi-modulating patterns. This method is based on the description of controllable redundant parameters in the modulating signals. A unified mathematical formulation is presented for carrier based PWM methods, which obtains outputs similar to the corresponding space vector PWM. A full and separate control of the fundamental voltage, vector redundancies and phase redundancies can be obtained in the carrier based PWM. In this paper, the proposed PWM method and corresponding algorithm for generating multi-modulating signals will be formulated and demonstrated by our simulations.

Design of the Unified Peripheral Device with Advanced Functions for Motor Control using VHDL (VHDL을 이용한 향상된 기능을 가지는 모터 제어용 주변장치의 통합 설계)

  • 박성수;박승엽
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.354-360
    • /
    • 2003
  • For the convenient use of high performance microprocessor in motor control, peripheral devices are needed for converting its control signals to compatible ones for motor drive. Customized devices are not plentiful far these purposes and their functions do not usually satisfied designers specification. The designers used to implement these functions on FPGA or CPLD using hardware description language. Then, in this case unessential programs are needed for control the peripherals. In this paper, a unified device model that links peripheral devices, including especially the pulse width modulation controller and the quadrature encoder interface device, to an interrupt controller is proposed. Advanced functions of peripherals could be achieved by this model and unessential programs can be simplified. Block diagrams and flowcharts are presented to illustrate the advanced functions. This unified device was designed using VHDL. The simulation results were presented to demonstrate the effectiveness of the proposed scheme.

Unified MPPT Control Strategy for Z-Source Inverter Based Photovoltaic Power Conversion Systems

  • Thangaprakash, Sengodan
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.172-180
    • /
    • 2012
  • Z-source inverters (ZSI) are used to realize both DC voltage boost and DC-AC inversion in single stage with a reduced number of power switching devices. A traditional MPPT control algorithm provides a shoot-through interval which should be inserted in the switching waveforms of the inverter to output the maximum power to the Z-network. At this instant, the voltage across the Z-source capacitor is equal to the output voltage of a PV array at the maximum power point (MPP). The control of the Z-source capacitor voltage beyond the MPP voltage of a PV array is not facilitated in traditional MPPT algorithms. This paper presents a unified MPPT control algorithm to simultaneously achieve MPPT as well as Z-source capacitor voltage control. Development and implementation of the proposed algorithm and a comparison with traditional results are discussed. The effectiveness of the proposed unified MPPT control strategy is implemented in Matlab/Simulink software and verified by experimental results.

A New Method for Elimination of Zero-Sequence Voltage in Dual Three-Level Inverter Fed Open-End Winding Induction Motors

  • Geng, Yi-Wen;Wei, Chen-Xi;Chen, Rui-Cheng;Wang, Liang;Xu, Jia-Bin;Hao, Shuang-Cheng
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 2017
  • Due to the excessive zero-sequence voltage in dual three-level inverter fed open-end winding induction motor systems, zero-sequence circumfluence which is harmful to switching devices and insulation is then formed when operating in a single DC voltage source supplying mode. Traditionally, it is the mean value instead of instantaneous value of the zero-sequence voltage that is eliminated, through adjusting the durations of the operating vectors. A new strategy is proposed for zero-sequence voltage elimination, which utilizes unified voltage modulation and a decoupled SVPWM strategy to achieve two same-sized equivalent vectors for an angle of $120^{\circ}$, generated by two inverters independently. Both simulation and experimental results have verified its efficiency in the instantaneous value elimination of zero-sequence voltage.

Modelling and Performance Analysis of UPFC Using EMTP/ATPDraw (EMTP/ATPDraw를 이용한 UPFC구현 및 동작 분석)

  • Jang, Won-Hyeok;Lee, You-Jin;Rhee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.217-219
    • /
    • 2008
  • Among the Flexible AC Transmission Systems (FACTS) devices, Unified Power Flow Controller (UPFC) is considered as the most powerful and versatile one as it provides simultaneous, real time control of the transmission parameters, voltages, impedances, and phase angles which determine the power flow in AC transmission systems. This paper presents modelling of UPFC and describes its characteristics. The UPFC implemented in this paper is based on Sinusoidal Pulse Width Modulation (SPWM) and Electro-Magnetic Transients Program (EMTP)/ATPDraw is used to model and analyze it. The simulation results confirm advantages of UPFC in operational performance with respect to the steady state Power flow regulation and the transient stability control.

  • PDF

Study of Dynamic Characteristics of an UPFC Switching-Level Model (UPFC의 스위칭레벨 상세 모의 및 동적 특성 고찰)

  • Won, D.J.;Kim, S.H.;Han, H.G.;Lee, S.K.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1287-1289
    • /
    • 1999
  • The UPFC(Unified Power Flow Controller) controls the magnitude and phase of the series injected voltage to exchange the real and reactive power with transmission line. The UPFC consists of two inverters connected together through the DC link capacitor. This paper describes the detailed UPFC switching-level model. PWM (Pulse Width Modulation) method is chosen to operate the inverters. Automatic voltage control mode and automatic power flow control mode is selected to control the UPFC. EMTP simulation is offered to obtain the basic operation characteristics of the UPFC and the dynamic characteristics of the UPFC is studied in detail.

  • PDF