DOI QR코드

DOI QR Code

Unified MPPT Control Strategy for Z-Source Inverter Based Photovoltaic Power Conversion Systems

  • Received : 2010.11.01
  • Accepted : 2011.11.09
  • Published : 2012.01.20

Abstract

Z-source inverters (ZSI) are used to realize both DC voltage boost and DC-AC inversion in single stage with a reduced number of power switching devices. A traditional MPPT control algorithm provides a shoot-through interval which should be inserted in the switching waveforms of the inverter to output the maximum power to the Z-network. At this instant, the voltage across the Z-source capacitor is equal to the output voltage of a PV array at the maximum power point (MPP). The control of the Z-source capacitor voltage beyond the MPP voltage of a PV array is not facilitated in traditional MPPT algorithms. This paper presents a unified MPPT control algorithm to simultaneously achieve MPPT as well as Z-source capacitor voltage control. Development and implementation of the proposed algorithm and a comparison with traditional results are discussed. The effectiveness of the proposed unified MPPT control strategy is implemented in Matlab/Simulink software and verified by experimental results.

Keywords

References

  1. B. K. Bose, P. M. Szezesny, and R. L. Steigerwald, "Microcontroller control of residential photovoltaic power conditioning system," IEEE Trans. Ind. Applicat., Vol. 21, No. 5, pp. 1182-1191, Sep. 1985. https://doi.org/10.1109/TIA.1985.349522
  2. D. Saha and V. P. Sundarsingh, "Novel grid-connected photovoltaic inverter," Proc. Inst. Elect. Eng., Vol. 143, No. 2, pp. 143-56, 1996.
  3. B. M. T. Ho and H. S. H. Chung, "An integrated inverter with maximum power tracking for grid-connected pv systems," IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 953-962, Jul. 2005. https://doi.org/10.1109/TPEL.2005.850906
  4. Y. Chen and K. M. Smedley, "A cost-effective single-stage inverter with maximum power point tracking," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1289-1294, Sep. 2004. https://doi.org/10.1109/TPEL.2004.833458
  5. S. Jain and V. Agarwal, "A single stage grid connected inverter topology for solar PV systems with maximum power point tracking," IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1928-1940, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904202
  6. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic Modules," IEEE Trans. Ind. Appl., Vol. 41, No. 5, pp. 1292-1306, Sep./Oct. 2005. https://doi.org/10.1109/TIA.2005.853371
  7. N. Kasa, T. Iida, and H. Iwamoto, "Maximum power point tracking with capacitor identifier for photovoltaic power system," Proc. Inst. Elect. Eng., Vol. 147, No. 6, pp. 497-502, Nov. 2000. https://doi.org/10.1049/ip-epa:20000641
  8. V. Salas, E. Olias, A. Barrado, and A. Lazaro, "Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems," Solar Energy Materials & Solar Cells, Vol. 90, pp. 1555-1578, Jul. 2006. https://doi.org/10.1016/j.solmat.2005.10.023
  9. F. Z. Peng, "Z-source inverter," IEEE Trans. Ind. Applicat., Vol. 39, No. 2, pp. 504-510, Mar./Apr. 2003. https://doi.org/10.1109/TIA.2003.808920
  10. F. Z. Peng, M. Shen, and Z. Qian, "Maximum boost control of the Z-source inverter," IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 833-838, 2005. https://doi.org/10.1109/TPEL.2005.850927
  11. M. Shen, A. Joseph, J. Wang, F. Z. Peng, and D. J. Adams, "Comparison of traditional inverters and Z-source inverter for fuel cell vehicles," IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1453-1463, Jul. 2007. https://doi.org/10.1109/TPEL.2007.900505
  12. S. Thangaprakash and A. Krishnan, "Implementation and critical investigation on modulation schemes of three phase impedance source inverters," Iranian. J. Electric. Electron. Eng., Vol. 6, No. 2, pp. 84-92, 2010.
  13. S. Thangaprakash, A. Krishnan, P. Jothibasu, and C. S. Subashkumar, "Analysis of advanced pulse width modulation schemes of Z-source inverter," Aust. J. Elect. Electron. Eng., Vol. 8, No. 2, pp. 155-170, 2011. https://doi.org/10.1080/1448837X.2011.11464294
  14. F. Z. Peng, X. Yuvan, X. Fang, and Z. Qian, "Z-source inverter for motor drives", IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 857-863, Jul. 2005. https://doi.org/10.1109/TPEL.2005.850938
  15. S. Thangaprakash and A. Krishnan, "Performance improvement of Zsource inverter fed induction motor drives using modified voltage space vector," Aust. J. Electric. Electron. Eng., Vol. 7, No. 2, pp. 163-174, 2010. https://doi.org/10.1080/1448837X.2010.11464268
  16. S. Thangaprakash and A. Krishnan, "Current mode integrated control technique for Z-source inverter fed induction motor drives," Journal of Power Electronics, Vol. 10, No. 3, pp. 285-292, May 2010. https://doi.org/10.6113/JPE.2010.10.3.285
  17. Huang, Y., Shen, M., Peng, F. Z. and Wang, J., "Z-source inverter for residential photovoltaic systems", IEEE Trans. Power Electron., Vol. 21, No. 6, pp. 1776-1782, Nov. 2006. https://doi.org/10.1109/TPEL.2006.882913
  18. C. J. Gajanayake, D. M. Vilathgamuwa, and P. C. Loh, "Development of a comprehensive model and a multi-loop controller for Z-source inverter DG system," IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp. 2352-2359, Aug. 2007 https://doi.org/10.1109/TIE.2007.894772
  19. J. W. Jung and A. Keyhani, "Control of a fuel cell based Z-source Converter," IEEE Trans. Energy Convers., Vol. 22, No. 2, pp. 467-476, Jun. 2007. https://doi.org/10.1109/TEC.2006.874232
  20. F. Z. Peng, M. Shen, and A. Joseph, "Z-source inverters, controls, and motor drive applications," KIEE Int. Trans. Elect. Mach. and Energy Convers. Sys., Vol. 5-B, pp. 6-12, 2005.
  21. F. Z. Peng, M. Shen, and K. Holland, "Application of Z-source inverter for traction drive of fuel cell-battery hybrid electric vehicles," IEEE Trans. Power Electron., Vol. 22, No. 3, pp. 1054-1061, May 2007. https://doi.org/10.1109/TPEL.2007.897123
  22. F. Z. Peng, X. Yuan, X. Fang, and Z. Qian, "Z-source inverter for adjustable speed drives," IEEE Power Electron. Letters, Vol. 1, No. 2, pp. 33-35, 2003. https://doi.org/10.1109/LPEL.2003.820935
  23. L. Sack, B. Piepenbreier, and M. V. Zimmermann, "Dimensioning of the Z-source inverter for general purpose drives with three-phase standard motors," in Proc. IEEE-PESC, pp. 615-620, 2008.
  24. Z. Chen, X. Zhang, and J. Pan, "An integrated inverter for a singlephase single-stage grid-connected PV system based on Z-source," Bull. Pol. Ac.: Tech., Vol. 55, No. 3, pp. 263-272, 2007.
  25. S. Thangaprakash and A. Krishnan, "Integrated control algorithm for an effective control of Z-source inverter using modified voltage space vector," Aust. J. Electric. Electron. Eng., Vol. 7, No. 1, pp. 53-64, 2010. https://doi.org/10.1080/1448837X.2010.11464257
  26. P. C. Loh, D. M. Vilathgamuwa, Y. S. Lai, G. T. Chua, and Y. W. Li, "Pulse width modulation of Z-source inverters," IEEE Trans. Power Electron., Vol. 20, No. 6, pp. 1346-1355, Nov. 2005. https://doi.org/10.1109/TPEL.2005.857543
  27. Y. Tang, S. Xie, C. Zhang, and Z. Xu, "Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability," IEEE Trans. Power Electron., Vol. 24, No. 2, pp. 409-415, Feb. 2009. https://doi.org/10.1109/TPEL.2008.2006173
  28. Q. V. Tran, T. W. Chun, J. R. Ahn, and H. H. Lee, "Algorithms for controlling both the dc boost and ac output voltage of Z-source inverter," IEEE Trans. Ind. Electron., Vol. 54, No. 5, pp. 2745-2750, Oct. 2007. https://doi.org/10.1109/TIE.2007.895146
  29. Q. V. Tran, T. W. Chun, H. G. Kim, and E. C. Nho, "Minimization of voltage stress across switching devices in the Z-source inverter by capacitor voltage control," Journal of Power Electronics, Vol. 9, No. 3, pp. 335-342, May 2009.
  30. S. Yang, X. Ding, F. Z. Peng, and F. Z. Z. Qian, "Unified control technique for Z-source inverter," in Proc. IEEE-PESC, pp. 3236-3242, 2008.
  31. P. Xu, C. Zhang, R. Cao, and L. Zhang, "Study of Z-source inverter for grid connected PV system," in Proc. PESC-2006, pp. 1-8, 2006.
  32. H. S. Bae, J. H. Park, G. H. Cho, and G. J. Yu, "New MPPT control strategy for two-stage grid-connected photovoltaic power conditioning system," Journal of Power Electronics, Vol. 7, No. 2, pp. 174-180, Apr. 2007.
  33. J. H. Park, H. G. Kim, E. C. Nho, and T. W. Chun, "Power conditioning system for a grid connected PV power generation using a quasi Z-source inverter," Journal of Power Electronics, Vol. 10, No. 1, pp. 79-84, Jan. 2010. https://doi.org/10.6113/JPE.2010.10.1.079
  34. I. H. Altas and A. H. Sharaf, "A photovoltaic array simulation model for matlab/Simulink GUI environment" in Proc. ICCEP-2007, pp. 341-345, 2007.

Cited by

  1. A Review on Industrial Applications of Z-Source Inverter vol.05, pp.09, 2017, https://doi.org/10.4236/jpee.2017.59002
  2. Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit vol.14, pp.3, 2014, https://doi.org/10.6113/JPE.2014.14.3.444
  3. Novel Predictive Maximum Power Point Tracking Techniques for Photovoltaic Applications vol.16, pp.1, 2016, https://doi.org/10.6113/JPE.2016.16.1.277
  4. Three Phase Embedded Z-Source Inverter vol.17, pp.6, 2012, https://doi.org/10.6113/TKPE.2012.17.6.486
  5. A comprehensive overview of maximum power extraction methods for PV systems vol.78, 2017, https://doi.org/10.1016/j.rser.2017.04.090
  6. An enhanced Z-source inverter topology-based permanent magnet brushless DC motor drive speed control vol.102, pp.8, 2015, https://doi.org/10.1080/00207217.2014.971350
  7. Characteristics of the Stress Reduction and Output Voltage of ST(Switched Trans) Quasi Z-Source Inverter vol.18, pp.1, 2013, https://doi.org/10.6113/TKPE.2013.18.1.1