• Title/Summary/Keyword: Unified Method

Search Result 886, Processing Time 0.029 seconds

An Unified Method of Finding the Inverse of a Matrix with Entries of a Linear Combination of Piecewise Constant Functions (각 항들이 구간 일정 함수의 선형 결합으로 표현된 행렬의 역을 구하는 방법)

  • ;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.6
    • /
    • pp.606-613
    • /
    • 1988
  • This paper presents an unified method of obtaining the inverse of a matrix whose elements are a linear combination of piecewise constant functions. We show that the inverse of such a matrix can be obtained by solving a set of linear algebraic equations.

  • PDF

A unified analysis method for capacitance and inductance of power transmission lines (송전선의 정전용량과 인덕턴스의 통일적 해석법)

  • 황석영
    • 전기의세계
    • /
    • v.29 no.3
    • /
    • pp.185-192
    • /
    • 1980
  • It is revealed that duality and similarity between both capacitance and inductance systems coexist, and also that the former is more efficient than the latter in application viewpoints in time-invariant linear cases as far as both systems are concerned. This paper, using the similarity relation, proposes a new magnetics capacity concept similar to electrostatic capacity so that inductance systems may be interpreted as the corresponding capacitance systems. The new concept makes it convenient to analyze the both systems by unified approach. Finally an example demonstrates the applicability and convenience of the proposed method, through the analysis of capacitances and inductances on the transposed transmission line.

  • PDF

Improvement of the Differential Current Relaying Method for Protecting the Transmission Line Equipped with UPFC (UPFC를 포함한 송전성에서의 전류차동 보호 방식의 개선)

  • Lim, Jung-Uk;Kwon, Young-Jin;Runolfsson, Thordur
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.40-47
    • /
    • 2005
  • The objective of this paper is to analyze power system dynamics influenced by UPFC(Unified Power flow Controller) operation and to develop a refined DCRM(Differential Current Relaying Method) to protect the transmission line with UPFC effectively. The implementation of control strategies for UPFC introduces new power system dynamic problems that must be considered while applying the conventional DCRM. In this paper, impact of UPFC operation on the DCRM has been reviewed and a refined DCRM has been proposed to detect faults properly in spite of UPFC operation. The porposed method is verified by simulation on the line-faulted system with UPFC.

Real-time Human Detection under Omni-dir ectional Camera based on CNN with Unified Detection and AGMM for Visual Surveillance

  • Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1345-1360
    • /
    • 2016
  • In this paper, we propose a new real-time human detection under omni-directional cameras for visual surveillance purpose, based on CNN with unified detection and AGMM. Compared to CNN-based state-of-the-art object detection methods. YOLO model-based object detection method boasts of very fast object detection, but with less accuracy. The proposed method adapts the unified detecting CNN of YOLO model so as to be intensified by the additional foreground contextual information obtained from pre-stage AGMM. Increased computational time incurred by additional AGMM processing is compensated by speed-up gain obtained from utilizing 2-D input data consisting of grey-level image data and foreground context information instead of 3-D color input data. Through various experiments, it is shown that the proposed method performs better with respect to accuracy and more robust to environment changes than YOLO model-based human detection method, but with the similar processing speeds to that of YOLO model-based one. Thus, it can be successfully employed for embedded surveillance application.

A Unified Surface Modeling Technique Using a Bezier Curve Model (de Casteljau Algorithm) (베지에 곡선모델 (드 카스텔죠 알고리듬) 을 이용한 곡면 통합 모델링 기법)

  • Rhim, Joong-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.127-138
    • /
    • 1997
  • In this study, a new technique is presented, by which one can define ship hull form with full fairness from the input data of lines. For curve modeling, the de Casteljau Algorithm and Bezier control points are used to express free curves and to establish the unified curve modeling technique which enables one to convert non-uniform B-spline (NUB) curve or cubic spline curve into composite Bezier curves. For surface modeling, the mesh curve net which is required to define surface of ship hull form is interpolated by the method of the unified curve modeling, and the boundary curve segments of Gregory surface patches are generated by remeshing(rearranging) the given mesh curve net. From these boundary information, composite Gregory surfaces of good quality in fairness can be formulated.

  • PDF

Multi-view Clustering by Spectral Structure Fusion and Novel Low-rank Approximation

  • Long, Yin;Liu, Xiaobo;Murphy, Simon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.813-829
    • /
    • 2022
  • In multi-view subspace clustering, how to integrate the complementary information between perspectives to construct a unified representation is a critical problem. In the existing works, the unified representation is usually constructed in the original data space. However, when the data representation in each view is very diverse, the unified representation derived directly in the original data domain may lead to a huge information loss. To address this issue, different to the existing works, inspired by the latest revelation that the data across all perspectives have a very similar or close spectral block structure, we try to construct the unified representation in the spectral embedding domain. In this way, the complementary information across all perspectives can be fused into a unified representation with little information loss, since the spectral block structure from all views shares high consistency. In addition, to capture the global structure of data on each view with high accuracy and robustness both, we propose a novel low-rank approximation via the tight lower bound on the rank function. Finally, experimental results prove that, the proposed method has the effectiveness and robustness at the same time, compared with the state-of-art approaches.

A GENERAL MULTIPLE-TIME-SCALE METHOD FOR SOLVING AN n-TH ORDER WEAKLY NONLINEAR DIFFERENTIAL EQUATION WITH DAMPING

  • Azad, M. Abul Kalam;Alam, M. Shamsul;Rahman, M. Saifur;Sarker, Bimolendu Shekhar
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.695-708
    • /
    • 2011
  • Based on the multiple-time-scale (MTS) method, a general formula has been presented for solving an n-th, n = 2, 3, ${\ldots}$, order ordinary differential equation with strong linear damping forces. Like the solution of the unified Krylov-Bogoliubov-Mitropolskii (KBM) method or the general Struble's method, the new solution covers the un-damped, under-damped and over-damped cases. The solutions are identical to those obtained by the unified KBM method and the general Struble's method. The technique is a new form of the classical MTS method. The formulation as well as the determination of the solution from the derived formula is very simple. The method is illustrated by several examples. The general MTS solution reduces to its classical form when the real parts of eigen-values of the unperturbed equation vanish.

An Extension of Unified Bayesian Tikhonov Regularization Method and Application to Image Restoration (통합 베이즈 티코노프 정규화 방법의 확장과 영상복원에 대한 응용)

  • Yoo, Jae Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.161-166
    • /
    • 2020
  • This paper suggests an extension of the unified Bayesian Tikhonov regularization method. The unified method establishes the relationship between Tikhonov regularization parameter and Bayesian hyper-parameters, and presents a formula for obtaining the regularization parameter using the maximum posterior probability and the evidence framework. When the dimension of the data matrix is m by n (m >= n), we derive that the total misfit has the range of m ± n instead of m. Thus the search range is extended from one to 2n + 1 integer points. Golden section search rather than linear one is applied to reduce the time. A new benchmark for optimizing relative error and new model selection criteria to target it are suggested. The experimental results show the effectiveness of the proposed method in the image restoration problem.

Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge

  • Zhou, Yongjun;Zhao, Yu;Liu, Jiang;Jing, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.343-354
    • /
    • 2021
  • The frequencies formulas of the bridge are of great importance in the design process since these formulas provide insight dynamic characteristics of the structure, which guides the designers to parametric analyses and the layout of the bridge in conceptual or preliminary design. Continuous rigid frame bridge is popular in the mountainous area. Mostly, this type of bridge was simplified either as a girder or cantilever when calculating the frequency, however, studies showed that the different configuration of the bridge made the problem more complex, and there is no unified fundamental calculation pattern for this kind of bridge. In this study, an empirical frequency equation is proposed as a function of pier's height, stiffness of pier and the weight of the structure. A unified fundamental frequency formula is presented based on the energy principle, then the typical continuous rigid frame bridge is investigated by finite element method (FEM) to study the dynamic characteristics of the structure, and then several key parameters are investigated on the effect of structural frequency. These parameters include the number, position and stiffness of the tie beam. Nonlinear regression analyses are conducted with a comprehensive statistical study from plenty of engineering structures. Finally, the proposed frequency equation is validated by field test results. The results show that the fundamental frequency of the continuous rigid frame bridge increases more than 15% when the tie beams are set, and it increases with the stiffness ratio of tie beam to pier. The results also show that the presented unified fundamental frequency has an error of 4.6% compared with the measured results. The investigation can predicate the approximate longitudinal fundamental frequency of continuous ridged frame bridge, which can provide reference for the seismic response and dynamic impact factor design of the pier.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.