• Title/Summary/Keyword: Unidirectional CFRP

Search Result 77, Processing Time 0.022 seconds

A Study on Tensile Properties of CFRP Composites under Cryogenic Environment (극저온 환경에서 탄소섬유강화 복합재의 인장 물성에 관한 연구)

  • Kim Myung-Gon;Kang Sang-Guk;Kim Chun-Gon;Kong Cheol-Won
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.52-57
    • /
    • 2004
  • In this study, mechanical tensile properties of carbon fiber reinforced polymeric (CFRP) composite cycled with thermo-mechanical loading under cryogenic temperature (CT) were measured using cryogenic environmental chamber. Thermo-mechanical tensile cyclic loading (up to 10 times) was applied to graphite/epoxy unidirectional laminate composites far room temperature (RT) to $-50^{\circ}C$, RT to $-100^{\circ}C$ and RT to $-150^{\circ}C$. Results showed that tensile stiffness obviously increased as temperature decreased while the thermo-mechanical cycling has little influence on it. Tensile strength, however, decreased as temperature down to CT while the reduction of strength showed little after CT-cycling. For the analysis of the test results, coefficient of thermal expansion (CTE) of laminate composite specimen at both RT and CT were measured and the interface between fiber and matrix was observed using SEM images.

Realtime Detection of Damage in Composite Structures by Using PVDE Sensor (압전고분자 센서를 이용한 복합재 구조의 실시간 손상탐지)

  • ;Y. A. Dzenis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.118-121
    • /
    • 2002
  • Polyvinylidene di-fluoride (PVDF) film sensor appeared to be practically useful for the structural health monitoring of composite materials and structures. PVDF film sensors were either attached to or embedded in the graphite/epoxy composite (CFRP) samples to detect the fatigue damage at the bondline of single-lap joints or the tensile failure of unidirectional laminates. PVDF sensors were sensitive enough to detect and determine the crack front in linear location since composites usually produce very energetic acoustic emission (AE). PVDF sensors are extremely cost-effective, as flexible as other plastic films, in low profile as thin as a few tens of microns, and have relatively wide-band response, all of which characteristics are readily utilized for the structural health monitoring of composite structures. Signals due to fatigue damage showed a characteristics of mode II (shear) type failure whereas those from fiber breakage at DEN notches showed that of mode I (tensile) type fracture.

  • PDF

Test and Finite Element Analysis on Compression after Impact Strength for Laminated Composite Structures of Unidirectional CFRP (일방향 탄소섬유강화 플라스틱 복합재 적층구조의 충격 후 압축강도 시험 및 유한요소해석)

  • Ha, Jae-Seok
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.321-327
    • /
    • 2016
  • In this study, tests and finite element analyses were performed regarding compression after impact strength for laminated composite structures of unidirectional carbon fiber reinforced plastic widely used in structural materials. Two lay-up sequences of composite laminates were selected as test specimens and four impact energy conditions were applied respectively. Impact and compressive strength tests were conducted in accordance with ASTM standards. Impact damages in test specimens were analyzed by using non-destructive inspection method of C-Scan, and compression after impact strengths were calculated with compressive test results. Progressive failure analysis method that can progressively simulate damages and fractures of fiber/matrix/lamina/laminate level was used for impact and compressive strength analyses. All analysis results including contact force, deflection, impact damages, compressive strengths, etc. were compared to test results, and the validity of analysis method was verified.

Fracture Study due to Various Core at Compact Tension Specimen Made of Carbon Fiber Reinforced Plastic (탄소성유강화플라스틱으로 만들어진 소형 인장 시험편에서 여러 종류의 심재에 따른 파손 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.589-596
    • /
    • 2018
  • Transportation or structure has the important role at clothing, food, and housing at modern society. If even the small crack happens and propagates at transportation or structure, the parts are fractured and they can cause a disaster. CT specimen was used in order to investigate the damage trend due to the crack propagation at this study to prevent this situation. As the material of CT specimen, the unidirectional carbon fiber reinforced plastic of the composite material in the limelight nowadays. The laminate angle designated in order of [60/-60/60/-60] was applied to the specimen model with the unidirectional fiber. As the analysis condition, the forced displacement was applied to the hole of upper part after fixing the hole of lower part. At the result of this study, the equivalent stress and shear stress was shown to be higher in order of the structural steel, copper, titanium and aluminum. This study result is thought to be utilized usefully at verifying the damage of CT specimen made of inhomogeneous material.

The Group Velocity of Lamb Wave Generated by the one Source in Unidirectional Laminated Composite Plates (일방향 적층 복합재료 판에서 한 음원에서 발생된 램파의 군속도)

  • Lee Jeong-Ki;Rhee Sang-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • The elastic waves in a plate are dispersive waves due to the characteristics of Lamb waves. However, S0 symmetric mode is less dispersive in the frequency region below the first cut-off frequency. The wave Propagation velocities vary with the direction in anisotropic plates such as Carbon Fiber Reinforced Plastic (CFRP) Plates. The wave vector direction and energy flow vector direction are same in isotropic plates. However, the wave vector direction same as the phase velocity direction is not in accordance with the energy flow direction same as the group velocity direction in anisotropic plates. In this study. the dispersion curves or the phase velocity from anti-symmetric and symmetric Lamb wave dispersion equation are calculated for unidirectional laminated composite plate. Slowness surface is sketched using phase velocity under the first cut-off frequency. The direction and magnitude of group velocity are corrected with this slowness surface. The measured group velocities are in good agreement with the corrected group velocity curve except near the fiber direction zone which is called the cusp region.

On Fiber Orientation Characterization of CERP Laminate Layups Using Ultrasonic Azimuthal Scanners

  • Im Kwang-Hee;Hsu, David K.;Sim Jae-Gi;Yang, In-Young;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.566-576
    • /
    • 2003
  • Carbon-fiber reinforced plastics (CFRP) composite laminates often possess strong in-plane elastic anisotropy attributable to the fiber orientation and layup sequence. The layup orientation thus greatly influences its properties in a composite laminate. It could result in the part being rejected or discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and to require less time than the optical test. In this paper, ultrasonic scanners were set out for different measurement modalities for acquiring ultrasonic signals as a function of in-plane azimuthal angle. The motorized scanner was built first for making transmission measurements using a pair of normal-incidence shear wave transducers. Another scanner was then built fer the acousto-ultrasonic configuration using contact transducers. A ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. We have compared the test results with model data. It is found that strong agreement are shown between tests and the model developed in characterizing cured layups of the laminates.

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.

Tensile Properties of CERP Composite with Different Resin Composition under Cryogenic Temperature (극저온 환경에서 탄소섬유강화 복합재료의 수지조성변화에 따른 인장 물성 측정)

  • Kim, Myung-Gon;Kang, Sang-Guk;Kong, Cheol-Won;Kim, Chun-Gon
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • In this study, carbon fiber reinforced polymeric (CFRP) composites with different resin composition were manufactured and resin formulation in composite materials were presented through tensile tests for cryogenic use. Thermo-mechanical cyclic loading (up to 6 cycles) was applied to CFRP unidirectional laminate specimens from room temperature to $-150^{\circ}C$. Tensile tests were then performed at $-150^{\circ}C$ using an environmental test chamber. In addition, matrix-dominant properties such as the transverse and in-plane shear characteristics of each composite model were measured at $-150^{\circ}C$ to examine the effects of resin formulation on their interfacial properties. The tensile tests showed that the composite models with large amounts of bisphenol-A epoxy and CTBN modified rubber in their resin composition had good mechanical performance at cryogenic temperature (CT).

Effect of Cold Temperature Dry and Elevated Temperature Wet on Mechanical Properties of CFRP Composites (냉각($-55^{\circ}C$) 및 고온다습 조건($82.2^{\circ}C$)이 탄소섬유강화 복합재의 기계적 특성에 미치는 영향 연구)

  • Kim, Hyo-Jin;Lee, Sih-Joong;Han, Sang-Ho;Kim, Sang-Kuk;Park, Seong-Jun
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.60-65
    • /
    • 2009
  • The mechanical behavior of carbon fiber reinforced polymeric (CFRP) composites was investigated. Both strength and modulus were measured at room temperature dry, cold temperature dry, $-55^{\circ}C$, and elevated temperature wet, $82.2^{\circ}C$ on seven different laminate configurations consisting of $[0_6]_T$, $[90_{12}]_T$, $[0_{16}]_T$ and $[90_{16}]_T$ unidirectional laminates, $[{\pm}45]_{5S}$ angle-ply laminate, $[0/90_{12}/0]_T$ cross-ply laminate, a 36-ply laminate $[0/45/-45/45/-45/0]_{3S}$. Based on the experimental data presented, it is shown that the strength at cold temperature dry, $-55^{\circ}C$ is increased with the brittleness of fiber or matrix. Moreover, it is shown that both shear strength and modulus at elevated temperature wet, $82.2^{\circ}C$ are decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

Characterization of CFRP Laminates′Layups Using Through-Transmitting Ultrasound Waves

  • Im, Kwang-Hee;David K. Hsu;Cho, Young-Tae;Park, Jae-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.292-301
    • /
    • 2002
  • Ultrasound waves interact strongly with the orientation and sequence of the plies in a layup when propagating in the thickness direction of composite laminates. Also the layup orientation greatly influences its properties in a composite laminate. If the layup orientation of a ply is misaligned, it could result in the part being rejected and discarded. Now, most researchers cut a small coupon from the waste edge and use a microscope to optically verify the ply sequences on important parts. This may add a substantial cost to the production since the test is both labor intensive and performed after the part is cured. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore we have developed, reduced, and implemented a novel ply-by-ply vector decomposition model for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. High probability is found, by comparisons between the model and tests, in characterizing cured layups of the laminates by using the proposed method.