• Title/Summary/Keyword: Uni-axial Vibration

Search Result 12, Processing Time 0.053 seconds

Verification on Damage Calculating Method of Vibration Fatigue Using Uni-axial Vibration Test (단축가진 시험을 통한 진동내구 손상도 계산)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.521-528
    • /
    • 2006
  • The vibration fatigue is suitable case of fatigue problem that system is exposed to the random or other irregular sources. Even some kinds of effort using power spectral density (PSD) and statistical concept was presented to cope with the intangible force signal, it is still lack of providing a reasonable solution when its exciting frequency is near or beyond of first eigenvalue. In this paper, energy approach method is presented to calculate a vibration induced fatigue damage in frequency domain. Since the corresponding damage become much larger than nominal case when the vibration is coupled with a mode shape of given structure, the new technique compensate the characteristics of structure with a measured frequency response function (FRF) between forcing acceleration and responding stress.

Introduction of energy isoclines for the vibration fatigue problem (진동내구 평가를 위한 Energy Isoclines 선정 방법)

  • Bae, Chul-Yong;Kim, Chan-Jung;Lee, Dong-Won;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.789-794
    • /
    • 2008
  • The damage identification in a flexible system requires modal informations which is represented by FRF(Frequency response function) or modal parameters. In this paper, energy isoclines are introduced to access the prediction of fatigue damage on a flexible component exposed mainly to the exciting source rather than external forces. After deriving the concerned function, energy isoclines, from the investigation of the relationship between energy and damage, its practical application is explained by the simple uni-axial excitation test for the notched round bar.

  • PDF

Vibration fatigue prediction using design sensitivity analysis (설계 민감도 해석을 활용한 진동내구 예측방법 연구)

  • Kim, Chan-Jung;Ju, Hyung-Jun;Shin, Sung-Young;Kwon, Sung-Jin;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.488-493
    • /
    • 2011
  • Authors previously suggested the design sensitivity analysis based on transmissibility function and identified the sensitivity of measured point over the small modification of system dynamics. On the other hand, the acceleration data will not reveal the strain information at the same location and authors suggested energy isoclines that successfully predict the fatigue damage on the interesting location to overcome the drawback of acceleration over fatigue society. Both of methodologies, sensitivity analysis and fatigue damage prediction, commonly use the response acceleration response as main indicator. In this paper, authors investigate the advanced method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with finite element model of a simple notched specimen and the prediction of fatigue damage at notched location is conducted for accelerations at different measurement locations that show different sensitivity contribution, either.

  • PDF

Fatigue Damage Prediction Using Design Sensitivity Analysis (설계 민감도 해석을 활용한 피로 손상도 예측방법)

  • Kim, Chan-Jung;Lee, Bong-Hyun;Jeon, Hyun-Cheol;Jo, Hyeon-Ho;Kang, Yeon-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2012
  • It was previously suggested the design sensitivity analysis based on transmissibility function to identify the most sensitive response location over a small design modification. On the other hand, energy isoclines were used to predict the fatigue damage with acceleration response only. Both of previous studies commonly tackle the engineering problem using the acceleration response alone such that it may be possible to investigate the relationship between sensitivity analysis and accumulated fatigue damage. In this paper, it is suggested the novel method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with a simple notched specimen and the prediction of fatigue damage is conducted using accelerations measured at different locations. It can be concluded that the accuracy of predicted fatigue damage is proportional to the sensitivity index of the responsible location.

Estimation of the vibration fatigue of a linear elastic system based on a desiign sensitivity analysis (설계 만감도 해석을 활용한 선형 시스템 진동내구 평가)

  • Kim, Chan-Jung;Kim, Ku-Sik;Kang, Ho-Young;Jin, Yeo-Hwa;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.491-496
    • /
    • 2010
  • The direct design modification of problematic component is disallowed in order to sacrifice other major factors such as a stability or a major performance. So, the best design policy is to risvise the immature structural medchanism under the minimal design change as soon as possible. For this paper presents a new design sensitivity analysis based on transmissibility rtio (TR) of response acceleration to find a proper candidate for the minimal design modification. The new sensitivity analysis is based on the fact that the sensitivity of TR over a small design change is inversly proportinal to the magnitude of TR. The theory of proposed design sensitivity analysis is simulated with the variance of TR over a dynamic change. Then, new methodology is appplied for a linear elastic specimen to detect the most sensitive node over a design change using measured accleration data during uni-axial vibration test, The physical verification of the sensitivity method is conducted on the CAE model of a linear elastic specimen by adding concentration mass and the vibration fatigue of the simple specimen is analyzed to estimate the relationship between fatigue behaviors and sensitivity consequences.

  • PDF

The Prediction of Dynamic Fatigue Life of Multi-axial Loaded Structure (다축 하중 구조물의 동적 피로수명 예측)

  • Yoon, Moon Young;Kim, Kyeung Ho;Park, Jang Soo;Boo, Kwang Seok;Kim, Heung Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.231-235
    • /
    • 2013
  • The purpose of this paper is to compare with estimation of equivalent fatigue load in time domain and frequency domain and estimate the fatigue life of structure with multi-axial vibration loading. The fatigue analysis with two methods is implemented with various signals like random, sinusoidal signals. Also an equivalent fatigue life estimated by rainflow cycle counting in time domain is compared with results estimated with probability density function of each signal in frequency domain. In case of frequency domain, equivalent fatigue life can estimate through Dirlik's method with probability density function. And the work proposed in this paper compared the fatigue damage accumulated under uni-axial loading to that induced by multi-axial loading. The comparison is preformed for a simple cantilever beam, which is exposed to vibrations of several directions. For verification of estimation performance of fatigue life, results are compared to those of FEM analysis (ANSYS).

Study on the performance of elastomeric O-ring subjected to foreign objects using finite-element analysis (유한요소해석을 이용한 이물질이 고무 오링에 미치는 영향과 성능 평가)

  • Pack, Inseok;Rhee, Heejang;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.52-58
    • /
    • 2016
  • The elastomeric O-ring is the most-commonly-used seal due to its excellent sealing capacity, and its availability in various costs and sizes; furthermore, its importance has lasted over a long duration. However, a dearth of research exists in Korea regarding the elastomeric O-ring and the corresponding techniques. The constituent parts of elastomeric rubber are important; to determine their properties, the uni-axial tension and equi-biaxial tension need to be tested. Also, the non-linear analysis method reduces the design cost. An O-ring failure causes leaks and vibration. In this paper, foreign objects are used to affect an O-ring and its performance so that all angles of the O-ring design can be considered. This paper presents a solution for the O-ring-failure problem using a finite-element analysis.

Estimation of Strain at Elastic System Using Acceleration Response (가속도 데이터를 활용한 선형 시스템의 변형률 예측)

  • Kim, Chan-Jung;Lee, Bong-Hyun;Jeon, Hyun-Cheol;Jo, Hyeon-Ho;Kang, Yeon-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • This paper investigates the prediction of the dynamic strain response using acceleration response only. Two methods are proposed for the strain prediction; one is based on beam theory and the other is calculated by the frequency response function between acceleration and strain. First, it is estimated the dynamics of the simple notched beam, including the non-linearity, through the uni-axial vibration testing. Then, the dynamic strain response is predicted under two different methods using acceleration response. The validation of proposed methods is conducted by the comparison between measured strain and predicted values. The comparison reveals that the proposed method based on the FRF between acceleration and strain is more reliable one than that stemmed from beam theory and the maximum relative error is less than 8 %.

Vibration Intensity Method to Detect Vibration Source of Rotary Compressor (로터리 컴프레서 진동원 검출을 위한 인텐시티 기법)

  • Kim, Heui-Cheol;Lee, Dong-Yeon;Yi, Hwa-Cho;Shim, Jae-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3398-3405
    • /
    • 2011
  • Vibration intensity (VI) method is used to reduce sound source generated from air-conditioning rotary compressor. Generally VI method is a good tool to find a sound source through vibration power flow. In this paper, the vibrations are measured by using the 3 uni-axial accelerometer from both the shells of the normal compressor and the fault compressor. The VI method successfully found out the sound source position on the surface of the compressor. In addition, the main noise (3kHz ~ 6.3kHz) was deminished by applying the newly designed compressor inner part which is related to the orginal noise source.