• Title/Summary/Keyword: Uni-axial Test

Search Result 67, Processing Time 0.068 seconds

Vibration fatigue prediction using design sensitivity analysis (설계 민감도 해석을 활용한 진동내구 예측방법 연구)

  • Kim, Chan-Jung;Ju, Hyung-Jun;Shin, Sung-Young;Kwon, Sung-Jin;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.488-493
    • /
    • 2011
  • Authors previously suggested the design sensitivity analysis based on transmissibility function and identified the sensitivity of measured point over the small modification of system dynamics. On the other hand, the acceleration data will not reveal the strain information at the same location and authors suggested energy isoclines that successfully predict the fatigue damage on the interesting location to overcome the drawback of acceleration over fatigue society. Both of methodologies, sensitivity analysis and fatigue damage prediction, commonly use the response acceleration response as main indicator. In this paper, authors investigate the advanced method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with finite element model of a simple notched specimen and the prediction of fatigue damage at notched location is conducted for accelerations at different measurement locations that show different sensitivity contribution, either.

  • PDF

Fatigue Damage Prediction Using Design Sensitivity Analysis (설계 민감도 해석을 활용한 피로 손상도 예측방법)

  • Kim, Chan-Jung;Lee, Bong-Hyun;Jeon, Hyun-Cheol;Jo, Hyeon-Ho;Kang, Yeon-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2012
  • It was previously suggested the design sensitivity analysis based on transmissibility function to identify the most sensitive response location over a small design modification. On the other hand, energy isoclines were used to predict the fatigue damage with acceleration response only. Both of previous studies commonly tackle the engineering problem using the acceleration response alone such that it may be possible to investigate the relationship between sensitivity analysis and accumulated fatigue damage. In this paper, it is suggested the novel method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with a simple notched specimen and the prediction of fatigue damage is conducted using accelerations measured at different locations. It can be concluded that the accuracy of predicted fatigue damage is proportional to the sensitivity index of the responsible location.

Microproperties and Fracture Behavior of Galvannealed Coating Layer of Automobiles (자동차용 합금화 용융아연도금강판의 도금층 미소물성 및 파괴 거동)

  • Park, Chun-Dal;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.91-99
    • /
    • 2007
  • Fractures of galvannealed coating layer during actual press forming in automotive applications were observed by scanning electron microscopy in order to understand fracture mechanism. Fracture behaviors of galvannealed coating layer in extra deep drawing quality steels and high strength steels have been studied by performing the tests describing the representative plastic deformation in sheet metal forming such as uni-axial tensile test, compression test, bi-axial test and plane strain test. Growth and direction of cracks were deeply related to the plastic deformation modes and history. The material properties of galvannealed coating layer were investigated by nano-indentation test equipped with Berkovich diamond indentor for the specimens. Hardness and elastic modulus of the coating layer were higher than bared steels and that was the reason for crack of coating layer. Flat friction test and drawbead friction test were performed to observe the effect of the surface morphology on the frictional characteristics. The micro-plasto hydrodynamic lubrication were appeared and played an important role in reducing the coefficient of friction.

Characteristics Evaluation and Useful Life Prediction of Rubber Spring for Railway Vehicle (전동차용 방진고무스프링 특성평가 및 사용수명 예측)

  • Woo, Chang-Su;Park, Dong-Chul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.104-111
    • /
    • 2006
  • The non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by material tests which are uni-axial tension and bi-axial tension. The computer simulation using the nonlinear element analysis program executed to predict and evaluate the load capacity and stiffness for chevron spring. In order to investigate the heat-aging effects on the rubber material properties, the acceleration test were carried out. Compression set results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the compression set test, several useful life prediction for rubber material were proposed.

  • PDF

Determination of Elastic Constants of Transversely Isotropic Rocks (이방성 암석에 대한 탄성계수의 실험적 결정)

  • 김호영
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.318-322
    • /
    • 1995
  • For transversely isotropic rocks such as schist, shale, etc, a method to determine the anisotropic elastic constants was proposed. Theoretically, equations of elastic constants E1, E2, and G2 can be derived from the measured strains in arbitrary three directions. If we attach three strain gages in accordance with the directons of anisotropy on the rock specimen under uni-axial compression, anisotropic elastic constants can be determined by these equations. With this method, the degree of anisotropy of transversely isotropic rocks will be easily evaluated by simple laboratory test.

  • PDF

Estimation of the vibration fatigue of a linear elastic system based on a desiign sensitivity analysis (설계 만감도 해석을 활용한 선형 시스템 진동내구 평가)

  • Kim, Chan-Jung;Kim, Ku-Sik;Kang, Ho-Young;Jin, Yeo-Hwa;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.491-496
    • /
    • 2010
  • The direct design modification of problematic component is disallowed in order to sacrifice other major factors such as a stability or a major performance. So, the best design policy is to risvise the immature structural medchanism under the minimal design change as soon as possible. For this paper presents a new design sensitivity analysis based on transmissibility rtio (TR) of response acceleration to find a proper candidate for the minimal design modification. The new sensitivity analysis is based on the fact that the sensitivity of TR over a small design change is inversly proportinal to the magnitude of TR. The theory of proposed design sensitivity analysis is simulated with the variance of TR over a dynamic change. Then, new methodology is appplied for a linear elastic specimen to detect the most sensitive node over a design change using measured accleration data during uni-axial vibration test, The physical verification of the sensitivity method is conducted on the CAE model of a linear elastic specimen by adding concentration mass and the vibration fatigue of the simple specimen is analyzed to estimate the relationship between fatigue behaviors and sensitivity consequences.

  • PDF

Material Test and Forming Analysis of Urethane Rubber (우레탄 고무에 대한 물성평가 및 성형해석)

  • Woo, Chang-Su;Park, Hyun-Sung;Lee, Geun-An
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.279-284
    • /
    • 2007
  • Elasto-forming has been dedicated to specific and limited production. Today, using enhanced pad materials, it has become an efficient and economical process alternative for low and medium volume metal-forming production. The non-linear properties of elastomer which are described as strain energy function are important parameter to design and evaluate of elastomer component. These are determined by material tests which are uni-axial tension and bi-axial tension. In order to investigate the design paramerer, Finite element analysis was carried out for elasto-forming process.

  • PDF

Displacement Behavior of Tunnel under Bridge Abutment due to Supporting Systems (교량기초 하부에 위치한 터널의 지보방법에 따른 변위거동)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Seung-Ryul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.613-620
    • /
    • 2005
  • This research is experimental paper to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

The Support Types of the Tunnel for Centrifuge Model (터널의 지보방법에 관한 원심모형실험(遠心模型實驗))

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.199-209
    • /
    • 2002
  • This research is experimental thesis to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF