• Title/Summary/Keyword: Unequal Power Divider

Search Result 30, Processing Time 0.028 seconds

A variable power divider circuit using the combine characteristic of the branchline coupler (브랜치라인 커플러 결합을 이용한 가변 전력 분배기 회로)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.245-251
    • /
    • 2017
  • The proposed variable pawer divider in this paper is composed of one equal power 2-way Wilkinson power divider, two variable phase shifters with 90-degree phase variation to be connected two output paths of the 2-way power divider, and one branchline coupler to combine output signals of two variable phase shifter. The proposed variable power divider can theoretically have an arbitrary power division ratio ranging from ${\infty}:1$ to ${\infty}:1$ due to 90-degrees phase variation of two phase shifter. The proposed power divider circuit fabricates on laminated TLX-9(h=20 mil, er=2.5; Taconic) with a center frequency of 1.7 GHz. The power division ratio of the fabricated prototype varies from about 1:100 to 200:1, with an input reflection characteristic(S11) of below -16 dB, an insertion loss of about -1.0 dB, and an isolation characteristic of below -17 dB between two output ports in the range 1.65-1.75 GHz.

The variable power divider circuit to use the ring-hybrid coupler (링-하이브리드 커플러를 이용한 가변 전력 분배기 회로)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • This paper introduces a new variable power divider circuit with an arbitrary power division ratio ranging from $1:{\infty}$ to ${\infty}:1$. The proposed power divider circuit consists of one branch-line coupler to be a good input matching characteristic, two variable phase shifters with 90-degree phase variation to be connected two output paths of the branch-line coupler, and one ring-hybrid coupler to combine output signals of two variable phase shifter. The power division ratio between the two output ports of the proposed power divider can be easily controlled by the phase variation of the two phase shifter. The proposed power divider circuit fabricates on laminated RF-35 (h = 20 mil, er=3.5; Taconic) with a center frequency of 2 GHz. The power division ratio of the fabricated prototype varies from about 1:1000 to 5000000:1, with an input reflection characteristic(S11) of below -20 dB, an insertion loss of about -1.0 dB, and an isolation characteristic of below -17 dB between two output ports in the range 1.9-2.1 GHz.

Design of a High Power Asymmetric Doherty Amplifier with a Linear Dynamic Range Characteristic (선형적인 동적 영역 특성을 갖는 고출력 비대칭 도허티 전력 증폭기의 설계)

  • Lee Ju-Young;Kim Ji-Yeon;Lee Dong-Heon;Kim Jong-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.538-545
    • /
    • 2006
  • In this paper, an asymmetric high power extended Doherty amplifier for WCDMA base-station applications is presented. The amplifier has an extended peak efficiency over 9 dB of output power and a linear dynamic range characteristic. To realize the peak efficiency extension and linear dynamic range characteristic, a two times larger peaking device compared to the main device, and an unequal power divider are used. From the experimental results of 1FA WCDMA signal, this amplifier has an efficiency of 31 % and an ACLR of -35 dBc is achieved at 9 dB back-off from P1 dB.

A Study on Efficiency Extension of a High Power Doherty Amplifier Using Unequal LDMOS FET's (불 균등한 LDMOS FET를 이용한 고 출력 도허티 증폭기의 효율 확장에 관한 연구)

  • Hwang, In-Hong;Kim, Jong-Heon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.81-86
    • /
    • 2005
  • In this paper, we present an efficiency extension of Doherty power amplifier using LDMOS FET devices with different peak output powers and an unequal power divider. The amplifier is designed by using a MRF21045 with P1 dB of 45 W as the main amplifier biased for Class-AB operation and a MRF21090 with P1 dB of 90 W as the peaking amplifier biased for Class-C operation. The input power is divided into a 1:1.5 power ratio between the main and peaking amplifier. The simulated results of the proposed Doherty amplifier shows an efficiency improvement of approximately 19 % in comparison to the class-AB amplifier at an output power of 42.5 dBm. The fabricated Doherty amplifier obtained a PAE of 33.68 % at 9 dB backed off from P1 dB of 51.5 dBm.

  • PDF

A study on the design of a Milimeterwave-Band 2:1 Unequal Wilkinson Power Divider Using DGS (DGS를 이용한 밀리미터 대역의 2:1 비대칭 윌킨슨 전력분배기 설계에 관한 연구)

  • Kim Dong-Joo;Ahn Dal
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.115-118
    • /
    • 2004
  • 본 논문에서는 DGS를 이용한 밀리미터대역의 2:1 비대칭 윌킨슨 전력분배기를 설계하였다. DSG(Defected Ground Structure)의 전파지연특성과 전송선로의 높은 임피던스 특성을 이용하여 전력분배기의 크기감소와 구현의 용이성을 실현하였다. 본 논문에서 설계한 전력분배기는 MEMS 기술로 제작이 가능하며 시뮬레이션 결과를 통하여 제시된 설계방법의 타당성을 입증하였다.

  • PDF

X-band Microstrip 4×4 Broadband Circularly Polarized Array Antenna Using Sequential Rotation Divider Structure (시퀀셜 로테이션 분배기 구조를 이용한 X-band 마이크로스트립 4×4 광대역 원형 편파 배열 안테나)

  • Kim, Jung-Han;Kim, Joong-Kwan;Kim, Yong-Jin;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.158-165
    • /
    • 2007
  • In this paper, the circularly polarized $4{\times}4$ array antenna is proposed for the X-band. A single antenna consists of square patch and unequal cross-aperture coupled feeding. The RHCP(Right Handed Circularly Polarization) is generated by unequal cross-aperture coupled feeding. By reducing space among elements of way antenna from 0.8 ${\lambda}_0$ to 0.45 ${\lambda}_0$, the mounting area of array antenna is miniaturized. The $2{\times}2$ array antenna is designed using sequential rotation feeding network. The good level of gain, axial ratio, and impedance bandwidth are achieved. The $4{\times}4$ array antenna is extended by ${\lambda}/4$ transformer and T-junction power divider. The simulated maximum radiation gain is 15.09 dBi at 10 GHz. The simulated 3 dB Axial Ratio bandwidth is from 9.05 to 10.4 GHz(13.5%). Also the measured impedance bandwidth($VSWR{\leq}2$) of manufactured $4{\times}4$ array antenna is from 8.45 to 11.84 GHz(33.9%). The measured maximum radiation gain is 11.10 dBi at 10 GHz. The measured 3 dB Axial Ratio bandwidth is from 9.42 to 10.47 GHz(10.5%).

A Study on the Fabrication of the 4 Port In-Phase High Power Combiner (4포트 동위상 고출력 전력결합기의 구현에 관한 연구)

  • Lee, Young-Sub;Jeon, Joong-Sung;Lee, Seok-Jeong;Ye, Byeong-Duck;Kim, Dong-Il;Hong, Tchang-Hee
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.289-294
    • /
    • 2002
  • The broadband high power 3-way combiner was designed and fabricated for the digital TV repeater. To achieve increase of the bandwidth and the high power capability, Wilkinson type power divider was adopted in our research. First of all, Wilkinson type power divider of equal-split and unequal-split were combined, and the characteristics of the four port in-phase power combiner was simulated for each thickness of dielectric substrates. As the results of simulation, the power combiner fabricated by using dielectric substrate of 120 mil-thickness has the characteristics as follows: insertion loss of less than -651 dB, reflection coefficient of less than -13 dB, isolation among the output ports of less than -15 dB, and pose difference among the output ports of smiler than 13$^{\circ}$. Therefore, this power combiner was possible to improve the limit of microstrip line width due to high impedance, the problem of power loss due to interaction between strip lines in a high power combiner and narrow bandwidth simultaneously. Furthermore, making broadband and high power could be achieved since the fabricated 3-way combiner has good characteristics of insertion loss, the reflection coefficient, separation between ports, and phase difference.

A Study on Improvement of Linearity and Efficiency Compensation in a Power Amplifier Using Asymmetical Doherty Structure (비대칭 Doherty 구조를 이용한 전력 증폭기의 선형성 개선과 효율 보상에 관한 연구)

  • Kang, Dong-Jin;Han, Ki-Kwan;Lee, Ho-Woong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • In this paper, a new design method of asymmetrical configuration of main amplifier and peaking amplifier using changed bias point is proposed for excellent linearity, instead of the conventional Doherty structure. We have utilized the uneven wilkinson power divider for the unequal power drive at the input network of amplifiers. And we proposed a compensating method of the decreasing efficiency due to improving linearity using 3-stage Doherty structures. From the simulation results of asymmetrical Dohertry power amplifier and asymmetrical 3-stage Doherty power amplifier with uneven power drive are implemented. From the implementation and measurement results of the each amplifier, IMD characteristics have -55 dBc as the good efficiency of 13% compensates the decreased entire efficiency due to the improving linearity characteristics.

  • PDF

An Unequal Power Divider using Common Defected Ground Structure (공통의 DGS를 이용한 비대칭 전력 분배기)

  • Lee, Jun;Lee, Jae-Hoon;Lim, Jong-Sik;Han, Sang-Min;Ahn, Dal
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1646-1647
    • /
    • 2011
  • 본 논문에서는 공통의 결함접지면구조(Defected ground structure, DGS)를 이용한 1:2 비대칭 전력 분배기를 설계하였다. 기본적인 비대칭 전력분배기를 설계하고 DGS를 삽입하여 크기를 줄이고 반으로 접은 구조로 회로의 크기를 대폭 줄일 수 있는 구조 이다. 사용한 기판으로는 Rogers 5880 31mils(0.7874mm)를 사용하여 1GHz 주파수대의 1:2 비대칭 전력 분배기를 설계 및 제작하여 우수한 특성을 확인 할 수 있었다.

  • PDF

A New Dual Band Branch Line Hybrid Coupler with Arbitrary Power Division Ratio (임의의 분배비를 갖는 새로운 이중 대역 가지 선로 결합기)

  • Kim, Kwi-Soo;Gwon, Chil-Hyeun;Dorjsuren, Baatarkhuu;Lim, Jong-Sik;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.444-449
    • /
    • 2009
  • This paper presents the design of a dual band branch line hybrid coupler(BLHC) with different power division ratios at two bands. In the proposed design, transmission lines of the BLHC are transformed to $\pi$-type equivalent circuits which represent different impedances and $\lambda/4$ electrical length at two frequency bands. In order to verify the proposed method, a dual band coupler with different power division ratios is designed for 0.9 GHz and 2 GHz applications. The desired power division ratios are 1:1 and 1:3 at the two operating frequency bands. The measured results show excellent performance with an insertion loss of less than 0.33 dB, a return loss of less than -18.07 dB, and good isolation characteristics.