• Title/Summary/Keyword: Undrained strength

Search Result 279, Processing Time 0.026 seconds

Determination of Undrained Shear Strength In Clay from Cone Pressuremeter Test (Cone Pressuremeter를 이용한 점성토의 전단 강도 산정)

  • 이장덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.49-58
    • /
    • 2004
  • The cone pressuremeter test (CPM) is a new in-situ test which combines a standard cone penetration test with a pressuremeter. The cone pressuremeter tests in clay are presented and analyzed. An analytical solution of CPM incorporated non-linear soil behavior with no volume change is presented, and curve fitting technique is proposed to make use of both the loading and unloading portions of the pressuremeter test. The proposed method is accomplished by putting greater emphasis on the unloading portion. Twenty CPM tests are analyzed using the proposed method, and the derived undrained shear strength of soil is compared with other tests such as field vane tests and laboratory tests. The interpreted soil parameters had resonable values when compared to other in-situ and laboratory test results. The cone pressuremeter has provided reliable measures of undrained shear strength using curve fitting method.

A Study on Undrained Shear Strength Characteristic of Pusan Clay (부산 점토의 비배수전단강도 특성에 관한 연구)

  • Ryu, Woongryul;Byun, Yoseph;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.43-51
    • /
    • 2010
  • In the downstream areas of the Nakdong river, Pusan clays are commonly found and thickness may reach to maximum of 100m. From geological point of view, Pusan clay are characterized as holocene clays, deposited for approximately 20,000 years ago. Recently, there have been many construction projects based on these soft ground areas. It is needed to know clearly soil properties of the areas for design and safety analysis, especially undrained shear strength of soft clays. However, Pusan clay have not been studied systematically because the clay layers are usually very deep, having high sensitivity characteristic. In this study, undisturbed UD samples obtained from the downstream areas of the Nakdong river were researched using laboratory tests (CthUE, CKcUC, CIUC, UU and UC) and in-situ tests (Field Vane, CPTu). The undrained shear strength characteristics of the samples were depicted using stress-strain relationship.

Shear strength characteristics of reinforced decomposed granite soil by uncomsolidated-undrained triaxial compression test (비압밀비배수 삼축압축시험에 의한 보강화강풍화토의 전단강도 특성)

  • Cho, Yong-Seong;Goo, Ho-Bon;Park, Inn-Joon;Kim, You-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.103-110
    • /
    • 2006
  • When enforced earth is used for the retain wall and four walls, the most important thing would be how to maximize the land utilization. Accordingly, in case of enforced earth, we pile up the minimal height of earth$(20\sim30cm)$ and harden the earth using a static dynamic hardening machine. In this paper, we tried to analyze and. compare the stress transformation characteristics of reinforced weathered granite soil. with geosynthetics when repetitive load is added to the enforced earth structure and when static load is added. The purposes of the study are as follows; 1) To compare and analyze non reinforced weathered granite soil and reinforced weathered granite. soil by executing a unconsolidated-undrained triaxial compression tests. 2) To identify the strength characteristics of weathered granite soil reinforced with geotextile due to the repetitive dynamic loads through comparison of the stress due to the static load and the repetitive dynamic loads.

  • PDF

Estimation of Soft Ground Characteristics using the Piezo-Cone Penetration Tests(CPTu) on Honam High-Speed Railway Planning Line (호남고속철도 계획노선에서의 피에조콘 관입시험(CPTu)에 의한 연약지반 특성 평가)

  • Lee, Il-Wha;Kwon, Oh-Jung;Kwen, Jin-Su;Min, Kyoung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1796-1801
    • /
    • 2007
  • Piezocone penetration testing(CPTu) results such as cone resistance$(q_c)$, sleeve friction$(f_s)$, and pore pressure(u), have been carried out at 5 sites in Honam high-speed railway areas of Korea, in order to continuously estimate the characteristics of soil layers and the undrained shear strength$(S_u)$ in a soft ground. For the applications of the conventional CPTu results to undrained shear strength, the cone factors$(N_{kt})$ were deduced based on Field vane tests, and Monte-Carlo Simulation(MCS). Moreover the correlations of the undrained shear strength of CPTu by soil depths were compared and revised with the results of triaxial compression(UU test), field vane and Dilatometer tests(DMT). The depths of soft foundation at 5 sites in Honam high-speed railway areas were calculated based on the results of the various field tests in addition CPTu. The applicability of CPTu for a soft foundation criterion referred to the criteria of high-speed railway and related agencies in Korea was evaluated.

  • PDF

Undrained Shear Strength of Marine Clays of Shihwa Region Obtained from CPTu (CPTu로부터 구한 시화지구 해성점토의 비배수 전단강도)

  • Jang, In-Sung;Kim, Bum-Sang
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.353-360
    • /
    • 2003
  • Estimation of undrained shear strength $(S_u)$ of clayey soils from piezocone penetration test (CPTu), which has widely been known as one of very promising in situ test methods, requires piezocone factors. Empirical correlations are generally utilized to derive piezocone factors, but previous studies on the empirical piezocone factors are site-specific and in some cases need engineering characteristics, which should be obtained from additional laboratory tests. In this study, empirical cone factors were evaluated by comparing 6 CPTu results at Shihwa region in Korea with reference $S_u$ values obtained from field vane test (FVT). From previous CPTu results of other regions in Korea as well as the results herein, the correlations between piezocone factor, $N_{kT}$ and CPTu results were investigated and three simplified evaluation methods of $S_u$ using only CPTu results were presented. The $S_u$ values estimated by $(q_T-{\sigma}_v)/{\sigma}'_v$ method shows better matches with those obtained from laboratory tests for marine clays at Shihwa region.

Cyclic Liquefaction Behavior Characteristics of Saemangeum Dredged Sand (새만금 준설모래의 동적 액상화 거동 특성)

  • Jeong, Jin-Seob;Choi, Du-Hon;Park, Seung-Hae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.351-354
    • /
    • 2001
  • Undrained cyclic triaxial compression tests were performed on Saemangeum dredged sand to evaluate factors affecting liquefaction strength and liquefaction behaviour characteristics. The results of these tests show that cyclic liquefaction can occur not only very loose sand(Relative density is 30%) but also dense sand(Relative density is 70%). To evaluate effect of the over consolidation ratio on the liquefaction strength, a series of undrained cyclic triaxial compression test was peformed, and the result of this test showed that the liquefaction of this test showed that the liquefaction strength of Saemangeum dredged sand approximately increased to square root of over consolidation ratio in the range of O.C.R value of 1.0 to 4.0. In the anisotropically consolidated sample tests, the liquefaction strength is increased by increasing the effective consolidation ratio.

  • PDF

The Characteristics of Strength and Consolidation of Clayey Soil Dependent on pH of Soil Pore Water (간극수의 pH가 점성토의 강도와 압밀특성에 미치는 영향)

  • Lee, Ho-Jin;Kim, Byung-Il;Park, Sang-Kyu;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1047-1054
    • /
    • 2005
  • The purpose of this study is the understanding to changes in the characteristic of soil structure and classification, atterberg limits, undrained shear strength and consolidation of clayey soil dependent on pH of soil pore water. A series of tests including consistency tests, uniaxial compressive tests, vane tests and oedometer tests are performed on. The test results indicated that pH changes in the soil pH resulted in changes in the soil structure and classification, stress-strain behavior. Specially, when pH is conditioned to 7, liquid limit, undrained shear strength and preconsolidation pressure are the largest.

  • PDF

The bearing capacity of square footings on a sand layer overlying clay

  • Uncuoglu, Erdal
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.287-311
    • /
    • 2015
  • The ultimate bearing capacity and failure mechanism of square footings resting on a sand layer over clay soil have been investigated numerically by performing a series of three-dimensional non-linear finite element analyses. The parameters investigated are the thickness of upper sand layer, strength of sand, undrained shear strength of lower clay and surcharge effect. The results obtained from finite element analyses were compared with those from previous design methods based on limit equilibrium approach. The results proved that the parameters investigated had considerable effect on the ultimate bearing capacity and failure mechanism occurring. It was also shown that the thickness of upper sand layer, the undrained shear strength of lower clay and the strength of sand are the most important parameters affecting the type of failure will occur. The value of the ultimate bearing capacity could be significantly different depending on the limit equilibrium method used.

Effect of rate of strain on the strength parameters of clay soil stabilized with cement dust by product

  • Radhi M Alzubaidi;Kawkab Selman;Ayad Hussain
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.419-429
    • /
    • 2024
  • The primary goal was to assess how the addition of cement dust, a byproduct known to be harmful, could be used to stabilize clay. Various percentages of cement dust were added to soil samples, which were then subjected to triaxial testing at different rates of strain using an unconsolidated undrained triaxial machine. Six different rates of strain were applied to analyze the response of the clay under different conditions, resulting in 216 triaxial sample tests. As the percentage of cement dust in the clay samples increased, there was a noticeable increase in the strength properties of the clay, indicating a positive effect of cement dust on the clay's strength characteristics. Higher rates of strain during testing led to increased strength properties of the clay. Varying cement dust content influenced the impact of increasing the rate of strain on the clay's strength properties. Higher cement dust content reduced the sensitivity of the clay to changes in strain rate, indicating that the clay became less responsive to changes in strain rate as cement dust content increased. Potential for Clay Stabilization Cement dust proved the potential to enhance the strength properties of clay, indicating its potential utility in clay stabilization applications. Both higher percentages of cement dust and higher rates of strain were found to increase the clay's strength. It's essential to consider both the percentage of cement dust and the rate of strain when assessing the strength properties of clay in practical applications.

Centrifuge Model Tests on Trafficability of Very Soft Ground Treated with Geotextile and Sand Mat (토목섬유와 모래로 처리된 초연약지반의 장비주행성에 대한 원심모형실험)

  • Jun, Sang-Hyun;Lee, Jong-Ho;Yoo, Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.13-23
    • /
    • 2010
  • In this study, centrifuge model tests with 50 g gravitational condition were performed to evaluate the bearing capacity of very soft ground, improved by spreading geotextile and sand on the surface of ground, for the heavy machinery to be able to access. For undrained shear strength of ground model, prepared with the clay sampled from the field, being in the range of 3.1~11.7 kPa, bearing capacity tests were performed with the model footing and the loading system built to simulate the heavy machinery on the ground model treated with geotextile and sand. Test results were compared with theoretically and numerically evaluated ones. Test results about load-settlement curves showed that the bearing capacity increases with the increase of the undrained shear strength of ground. Punching shear or local shear failure was also observed. For a relatively low undrained shear strength of ground, settlement behavior is found to be crucial to evaluating the trafficability of machinery whereas bearing capacity becomes a dominant factor with the increase of undrained shear strength of ground. The method for assessing the bearing capacity of the ground related to trafficability of machinery is presented by acquiring the regression relationship between the contact pressure of machinery and settlements using load-settlement curves with the change of the undrained shear strength. Furthermore, results of numerical analyses about load-settlement relation are in relatively good agreement with those of centrifuge model test.