DOI QR코드

DOI QR Code

Centrifuge Model Tests on Trafficability of Very Soft Ground Treated with Geotextile and Sand Mat

토목섬유와 모래로 처리된 초연약지반의 장비주행성에 대한 원심모형실험

  • Received : 2009.09.02
  • Accepted : 2010.03.05
  • Published : 2010.03.31

Abstract

In this study, centrifuge model tests with 50 g gravitational condition were performed to evaluate the bearing capacity of very soft ground, improved by spreading geotextile and sand on the surface of ground, for the heavy machinery to be able to access. For undrained shear strength of ground model, prepared with the clay sampled from the field, being in the range of 3.1~11.7 kPa, bearing capacity tests were performed with the model footing and the loading system built to simulate the heavy machinery on the ground model treated with geotextile and sand. Test results were compared with theoretically and numerically evaluated ones. Test results about load-settlement curves showed that the bearing capacity increases with the increase of the undrained shear strength of ground. Punching shear or local shear failure was also observed. For a relatively low undrained shear strength of ground, settlement behavior is found to be crucial to evaluating the trafficability of machinery whereas bearing capacity becomes a dominant factor with the increase of undrained shear strength of ground. The method for assessing the bearing capacity of the ground related to trafficability of machinery is presented by acquiring the regression relationship between the contact pressure of machinery and settlements using load-settlement curves with the change of the undrained shear strength. Furthermore, results of numerical analyses about load-settlement relation are in relatively good agreement with those of centrifuge model test.

본 연구에서는 초연약지반의 장비진입을 위해 토목섬유와 모래를 포설하는 표층보강공법의 지지력 평가를 목적으로 50g 중력수준의 원심모형실험을 수행하였다. 연약지반의 비배수 전단강도를 3.1~11.7kPa로 조성하고, 토목섬유와 모래를 설치한 모형지반에 장비하중을 모사한 기초모형을 하중재하장치에 연결하여 지지력 실험을 수행하였다. 원심 이론적 제안식과 수치해석을 수행하여 비교하였다. 실험결과 지반강도의 증가에 따라 지지력이 증가하는 하중-침하 관계를 획득하였으며, 관입 또는 국부전단의 파괴경향을 관찰하였다. 작은 비배수 전단강도의 지반에서는 침하의 거동이 장비 주행성 평가의 중요한 인자인데 반하여 큰 비배수 전단강도의 지반에서는 지지력이 지배적 비배수 전단강도에 따른 지지력과 침하량의 회귀분석식을 산정하여 장비의 주행성 확보를 위해 지지력을 평가할 수 있는 방안을 제안하였다. 수치해석 결과, 실험결과와 유사한 하중-침하 관계를 얻을 수 있었다.

Keywords

References

  1. 김명모 (1991), 사면안정(XI), 대한토질공학회지, 제7권, 제2호, pp.87-91.
  2. 김현기 (1998), 인천국제공항 연약지반의 공학적 특성, 석사학위논문, 서울대학교, pp.26-35.
  3. 장민호 (2004), 토목섬유-Sand Mat로 보강한 지반의 지지력에 관한 연구, 석사학위논문, 순천대학교, pp.20.23.
  4. 정길수 (2005), 하중재하방법에 따른 SCP복합지반의 거동특성, 박사학위논문, 강원대학교, pp.27-28.
  5. 한국지반공학회 (2005), 지반공학 시리즈 10 개정판 준설매립, 구미서관, 서울, pp.363-412.
  6. Bakker, J.G. (1977), Mechanical behaviour of membranes in road foundations, Proc. First int. Conf. on the Use of Fabrics in Geotechnics, Paris, Vol.1, pp.139-142.
  7. Elder, D. M. (1985), Stress strain and strength behaviour of very soft soil sediment, Ph.D. Thesis, Wofson College, Oxford, pp.40-47 .
  8. Fuglsang L.D. and Ovesen N.K. (1988), The application of theory of modelling to centrifuge studies, Centrifuge in soil mechanics, Craig, W., James, Schofield, A. (eds.), Baikema, Rotterdam, pp.119-138.
  9. Giroud, J.P. and Noiray, L. (1981), Design of geotextile reinforced unpaved roads, ASCE Journal of the Geotechnical Engineering Division, Vol.107(GT9), pp.1233-1254.
  10. Hanna, A.M. (1981), Foundations on strong sand overlying weak sand, ASCE Journal of the Geotechnical Engineering Division, Vol.107(GT7), pp.915-927.
  11. Hanna, A.M. (1982), Bearing capacity of foundations on a weak sand layer overlying a strong deposit, Canadian Geotechnical Journal, Vol.19, No.3, pp.392-396. https://doi.org/10.1139/t82-043
  12. Leroueil, S., Tavenas, F., and Le Bihan, J. P. (1983), Proprietes caracteristiques des argiles de l'est du Canada, Canadian Geotechnical Journal, Vol.20, No.4, pp.681-705. https://doi.org/10.1139/t83-076
  13. Meyerhof, G. G. and Hanna, A. M. (1978), Ultimate bearing capacity of foundations on layered soils under inclined load, Canadian Geotechnical Journal, Vol.15, pp.565-572.
  14. Meyerhof, G. G. (1951), The Ultimate bearing capacity of foundations, Geotechnique, Vol.2, No.4, pp.301-331. https://doi.org/10.1680/geot.1951.2.4.301
  15. Meyerhof, G. G. (1959), Compaction of sands and the bearing capacity of piles, JSMFD, ASCE, Vol.82, SM1, pp.1-19.
  16. Meyerhof, G. G. (1963), Some recent research on the bearing capacity of foundations, Canadian Geotechnical Journal, Vol.1, No.1, pp.16-26. https://doi.org/10.1139/t63-003
  17. Meyerhof, G. G. (1974), Ultimate bearing capacity of footings on sand layer overlying clay, Canadian Geotechnical Journal, Vol.11, pp.223-229. https://doi.org/10.1139/t74-018
  18. Michalowski, R.L. and Shi, L. (1995), Bearing capacity of footings over two-layer foundation soils, Journal of Geotechnical Engineering, Vol.121, No.5, pp.421-428. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(421)
  19. Nieuwenhuis, J.D. (1977), Membraines and the bearing capacity of road bases, Proc. First Int. Conf. on the Use of Fabrics in Geotechnics, Paris, Vol.1, pp.3-8.
  20. Nishibayashi, K. (1982), Surface layer stabilisation of soft ground using synthetic chemical fibre sheet, Proc. Symp. on Recent Developments in Ground improvement Techniques, Bangkok, A.A. Balkema, Rotterdam, pp.236-254.
  21. Okamura, M., Takemura, J. and Kimura, T. (1998), Bearing capacity predications of sand overlying clay based on limit equilibrium methods, Soil and Foundation, Vol.38, No.1, pp.181-194. https://doi.org/10.3208/sandf.38.181
  22. Reddy, A. S. and Srinivasan, R. J. (1967), Bearing capacity of footings on layered clays, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, No.2, pp.83-99.
  23. Salem, S. S., Hafbz, H. H. and El-Sayed A. E. (2000), Stabilizing of soft subgrade mechanically using geosynthetics, 3rd International Conference on Ground Improvement Techniques, pp.341-348.
  24. Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley & Sons, Inc., New York, pp.118-136.
  25. Terzaghi, K., Peck, R.B., and Mesri, G. (1996), Soil mechanics in engineering practice 3rd ed., John Wiley & Sons, Inc., New York, pp. 161-207.
  26. Vesic, A. S. (1972), Expansion of cavities in infinite soil mass, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, SM3, pp.265-290.
  27. Vesic, A. S. (1973), Analysis of ultimate loas of shallow foundations, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.99, No.1, pp.45-73.
  28. Yamanouchi, T. (1979), A proposed practical formula of bearing capacity for earth work method on soft clay ground using a resinous mesh, Technology reports of the kryushu university, Vol.52, No.3, pp.201-207.(In Japanese.)