• Title/Summary/Keyword: Underwater sound speed

Search Result 52, Processing Time 0.029 seconds

Experimental Validation on Underwater Sound Speed Measurement Method Using Cross-Correlation of Time-Domain Acoustic Signals in a Reverberant Water Tank (잔향 수조에서의 시간 이력 수음 신호 간 교차상관을 이용한 수중 음속 계측 방법에 관한 실험적 검증)

  • Joo-Yeob Lee;Kookhyun Kim;Sung-Ju Park;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Underwater sound speed is an important analysis parameter on an estimation of the underwater radiated noise (URN) emitted from vessels. This paper aims to present an underwater sound speed measurement procedure using a cross-correlation of time-domain acoustic signals and validate the procedure through an experiment in a reverberant water tank. For the purpose, time-domain acoustic signals transmitted by a Gaussian pulse excitation from an acoustic projector have been measured at 20 hydrophone positions in the reverberant water tank. Then, the sound speed in water has been calculated by a linear regression using 190 cross-correlation cases of distances and time lags between the received signals and the result has been compared with those estimated by the existing empirical formulae. From the result, it is regarded that the presented experimental procedure to measure an underwater sound speed is reliably applicable if the time resolution is sufficiently high in the measurement.

Estimation of Effects of Underwater Acoustic Channel Capacity Due to the Bubbles in the High Frequency Near the Coastal Area

  • Zhou, Guoqing;Shim, Tae-Bo;Kim, Young-Gyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.69-76
    • /
    • 2008
  • Measurements of bubble size and distribution in the surface layer of the sea, wind speed, and variation of ocean environments were made continually over a four-day period in an experiment conducted in the South Sea of Korea during 17-20 September 2007. Theoretical background of bubble population model indicates that bubble population is a function of the depth, range and wind speed and bubble effects on sound speed shows that sound speed varies with frequency. Observational evidence exhibited that the middle size bubble population fit the model very well, however, smaller ones can not follow the model probably due to their short lifetime. Meanwhile, there is also a hysteresis effect of void fraction. Observational evidence also indicates that strong changes in sound speed are produced by the presence of swarms of micro bubbles especially from 7 kHz to 50 kHz, and calculation results are consistent with the measured data in the high frequency band, but inconsistent in the low frequency band. Based on the measurements of the sound speed and high frequency transmission configuration in the bubble layer, we present an estimation of underwater acoustic channel capacity in the bubble layer.

MDS-based Localization Reflecting Depth, Temperature, and Salinity of Ocean in Underwater Acoustic Sensor Networks(UWASNs) (수중 센서 네트워크에서 수심, 수온, 염도를 고려한 환경에서 MDS를 이용한 위치인식 연구)

  • Jung, Hui-Sok;Kim, Eun-Chan;Yang, Yeon-Mo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.187-191
    • /
    • 2012
  • In these days, there are huge increases of concerning underwater acoustic sensor networks (UWASNs) to explore marine resources and to monitor climate change. To collect information from sensor nodes which are randomly deployed in underwater, Multi-Dimensional Scaling (MDS) based locating methods have been recently introduced, which consider sound speed to be constant in underwater. However, underwater sound speed tends to vary depending on underwater environment factors, such as depth, temperature, and salinity. In this paper, we propose a method considering environment factors, can influence upon sound speed in underwater, and introduce experimental setup which can follow up environmental factors.

Variability of Underwater Sound Propagation in the Northern Part of the East Sea (동해 북부해역의 수중음파전달 변동성)

  • Lim, Se-Han;Yun, Jae-Yul;Kim, Yun-Bae;Nam, Sung-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.52-61
    • /
    • 2007
  • Temporal and spatial variations of sea water largely affect on the pattern of underwater sound propagation. Acoustic environmental changes and their effects on underwater sound propagation in the northern part of the East Sea, which have been poorly studied mainly due to lack of observations, are investigated by analyzing the hydrographic data acquired since 1993. Severe changes in acoustic environments are associated with various physical processes such as deep convection, thermal fronts, and eddies in the northern part of the East Sea. Spatio-temporal variations of sound speed field and the layer of the maximum sound speed are categorized into six typical cases. Using a sound source of 5 kHz, acoustic transmission losses are calculated range-independently for the six typical cases. Significant differences among the patterns of transmission loss in the six cases suggest that a different tactics are required when we operate in the northern part of the East Sea.

A result of prolonged monitoring underwater sound speed in the center of the Yellow Sea (황해 중앙부에서 수중음속의 장기간 모니터링 결과)

  • Kil, Bum-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • A time-series variation of temperature, salinity, and underwater sound speed was analyzed using an Array for Real-time Geostrophic Oceanography (ARGO) float which autonomously collects temperature and salinity for about 10month with 2 days cycle among 12 floats in the center of the Yellow Sea. As a result, the underwater sound channel appeared below the thermocline as the surface sound channel, which is dominant in the winter season, reduced in April. Besides, for a certain time in the spring season, the sound ray reflected the sea surface frequently due to the short-term temperature inversion effect. Based on the case of successful observation of ARGO float in the shallow water, using prolonged monitoring unmanned platform may contribute to predicting sound transmission loss if the temperature inversion and sound channel including background environment focusing are investigated in the center of the Yellow Sea.

Effect of expanding low-salinity water in the East China Sea on underwater sound propagation (동중국해 저염분수의 확장이 수중 음파 전달에 미치는 영향)

  • Bum-Jun Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • The salinity of sea water is known as a less influencing variable in the calculation of the sound speed of the sea water. This study investigated how the low salinity of sea water affects the vertical structure of the sound speed near the mouth of the Yangtze (Changjiang) River when the diluted fresh water extends toward the East China Sea in the summer. As a result of comparing two types of sound speeds considered measured and fixed salinity, sound speeds appeared distinguishable when the halocline formed steeper than the thermocline due to Yangtze-River Diluted Water (YRDW). In addition, unlikely with fixed salinity conditions, when measured salinity was considered, an underwater sound channel appeared in the middle of the thermocline of which the source depth is located. Accordingly, considering the salinity, this study suggests using Expendable Conductivity Temperature Depth (XCTD) and Expendable Sound Velocimeter (XSV) rather than Expandable Bathy Thermograph (XBT) when calculating sound speed because of the strong halocline due to YRDW in the summer.

Ranging Algorithm of Underwater Acoustic Wave with Look-up Table (Look-up table을 이용한 수중 음향파 거리 추정 알고리즘)

  • Cheon, Ju-Hyun;Moon, Seung-Hyun;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.23-29
    • /
    • 2015
  • In this paper, we introduce a underwater ranging algorithm with Look-up Table (LUT) by modifying the existing method which is using the changes of angles of accoustic rays with SSP (Sound Speed Profile). We compare the horizontal distance errors and the calculation times. Our new algorithm exploits Time of Arriva l(ToA) - horizontal distance table based on SSP. This algorithm offers faster calculation speed than the previous one with the slight increase of the distance estimation error.

A Study on the Characteristics of Underwater Sound Transmission by Short-term Variation of Sound Speed Profiles in Shallow-Water Channel with Thermocline (수온약층이 존재하는 천해역에서 단기간 음속구조 변화에 따른 음향 신호 전달 변동에 관한 연구)

  • Jeong, Dong-Yeong;Kim, Sea-Moon;Byun, Sung-Hoon;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.20-35
    • /
    • 2015
  • Underwater acoustic channel impulse responses (CIR) are influenced by sound speed profile (SSP), and the variation of CIR has significant effects on the performance of underwater acoustic communication systems. A significant change of SSP can occur within a short period, which must be considered during the design of underwater acoustic modems. This paper statistically analyzes the effect of the variation of SSP on the long-range acoustic signal propagation in shallow-water with thermocline using numerical modeling based on the data acquired from JACE13 experiment near Jeju island. The analysis result shows that CIR changes variously according to the SSP and the depth of the transmitter and receiver. We also found that when the transmitter and receiver are deeper, the variation of sound wave propagation pattern is smaller and signal level becomes higher. All CIR obtained in this study show that a series of bottom reflections due to downward refraction and small bottom loss in the shallow water with thermocline can be very important factor for long-range signal transmission and the performance of underwater acoustic communication system in time varying ocean environment can be very sensitive to the variation of SSP even for a short period of time.

Study on the Underwater Acoustic Properties of Polyurethane Elastomer

  • Shin, Hyun Dai;Ahn, Byung Hyun
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • Two kinds of polyurethane elastomers were prepared and their acoustical properties underwater investigated. Their dynamic mechanical properties were measured using a dynamic mechanical analyzer. The sound speed and echo reduction in the 1-50 kHz frequency range were calculated from the data obtained using the analyzer. The sound speed, transmission and attenuation cofficient in 300-800 kHz were measured in a water-filled tank. Impedance tube experiments were performed to determine the reflective coefficient and echo reduction in the 3-8 kHz range. The polyurethane elastomer containing a hollow glass sphere showed a lower reflective coefficient and a higher echo reduction than the polyurethane elastomer without a filler.

Temporal and Spatial Variability of Sound Speed in the Sea around the Ieodo (이어도 주변해역에서 수중음속의 시공간적 변동성)

  • Park, Kyeongju
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1141-1151
    • /
    • 2020
  • The impact of sound speed variability in the sea is the very important on acoustic propagation for the underwater acoustic systems. Understanding of the temporal and spatial variability of ocean sound speed in the sea around the Ieodo were obtained using oceanographic data (temperature, salinity). from the Korea Oceanographic Data Center, collected by season for 17 years. The vertical distributions of sound speed are mainly related to seasonal variations and various current such as Chinese coastal water, Yellow Sea Cold Water (YSCW), Kuroshio source water. The standard deviations show that great variations of sound speed exist in the upper layer and observation station between 16 and 18. In order to quantitatively explain the reason for sound speed variations, Empirical Orthogonal Function (EOF) analysis was performed on sound speed data at the Line 316 covering 68 cruises between 2002 and 2018. Three main modes of EOFs respectively revealed 55, 29, and 5% the total variance of sound speed. The first mode of the EOFs was associated with influence of surface heating. The second EOFs pattern shows that contributions of YSCW and surface heating. The first and second modes had seasonal and inter-annul variations.