• Title/Summary/Keyword: Underwater sound pressure

Search Result 52, Processing Time 0.024 seconds

Application of the Polar Parabolic Equation Method for Sound Propagation over a Smooth Sea Mountain in the Ocean (해저구릉 위로의 음의 전파를 설명하기 위한 Polar PE의 적용)

  • You, Chul-Soo;Yoon, Suk-Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.37-42
    • /
    • 1995
  • The polar parabolic equation method (Polar PE) which introduces a series of "cascaded" boundary fitting coordinates into the parabolic equation method has been verified as a good numerical method for atmospheric sound propagation over a curved surface and hills. Polar PE is applied here to underwater sound propagation over a sea mountain assuming locally reacting boundary sea bottom and pressure release water surface for the boundary conditions. Calculations are presented for underwater propagation over a 450 m high sea mountain. Feasibility of Polar PE application for underwater sound propagation over a smooth mountain is discussed.

  • PDF

The Underwater Noise of Fishing Boat (어선의 수중소음에 관한 연구)

  • YOON Gab Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.260-264
    • /
    • 1981
  • The purpose of the present study is to measure the sound spectrum of the underwater noise generated by a stern trawler M/S Saebada (2,275 GT, 3600 ps) in the various operational conditions. Underwater noises were recorded by a hydrophone (B & K 8100) and analyses were made rising a digital frequency analyzer (B & K 2131) and level recorder (B & K 2370). The predominant frequency range was 100-500 Hz, and maximum sound pressure level was 121 dB(re. $1{\mu}Pa$). Underwater noise level increased with the increased speed of the vessel. Sound pressure level measured in the course of astern cruising was higher than that measured in the course of ahead cruising and also the noise spectrums were different in these two cases. At the time of cruising the underwater noise was higher than 10 dB compared to those values measured at the time at rest with only engine operation. The underwater noise of the vessel was mainly due to the main engine revolution of the propeller and the vibration of hull.

  • PDF

A Study on the Excavation Method Near Fish Farms and Livestock (양만장 및 가축사육시설 인접지역 암굴착공법 검토에 관한 연구)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Jun, Yang-Bae
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2013
  • Construction vibration such as explosive blast, hydraulic breaker, vibratory roller, pile driving noise and so on, injuries in areas around the construction sites. In particular, underwater sound caused by ground vibration is propagation such as structure borne noise. Vibration and underwater sound due to construction activities may cause injury to river, sea or land fish farms near construction sites. The purpose of present study is to measure the sound pressure level and frequency analysis of the underwater noise generated by ground vibration(Blasting, hydraulic crawler drill, hydraulic breaker, vibratory roller). Underwater noise were monitoring by a hydrophone (TC 4013) and recorded, analysis were made using a by software (Prosig).

Experimental Study on Source Level Estimation Techniques of Underwater Sound Source in Reverberant Water Tank (잔향수조 내 수중음원의 음원레벨 추정기법에 관한 실험연구)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2019
  • The acoustic power is used as a primary index characterizing underwater sound sources and could be defined by its source level. The source level has been assessed using various experimental techniques such as the reverberation time method and reverberant tank plot method. While the reverberation time method requires reverberation time data extracted in a preliminary experiment in a reverberant water tank, the reverberant tank plot method only needs acoustic pressure data directly obtained at the reverberation water tank. In this research, these experimental techniques were studied in comparative experiments to estimate the source levels of underwater sources in a reverberant water tank. This paper summarizes the basic theories and procedures of these experimental techniques and presents the experimental results for an underwater source in a long cuboid water tank using each technique, along with a discussion.

A Study on the Establishment of Management Criteria for Underwater Noise (수중소음 관리 기준 설정을 위한 소고)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Jun, Yang-Bae
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.119-132
    • /
    • 2010
  • There are many dispute with a construction due to such environment problem as vibration and noise. Generally, we have a standard for acceptance level in land. But we have not a sufficient standard for acceptance level or guide line in underwater sound. In other countries, a acceptance level or guide line in underwater sound has been suggested. Especially the management criterion of underwater noise for fish has bee suggested using the measurement data (peak pressure, rms, energy and SEL) by a hydrophone. In Korea, there is no management criterion of underwater noise for fish. This study suggested the management criteria of underwater noise for fish based on the measured data by a hydrophone.

Experimental Investigation of the Acoustic Signal Detection Performance for an Interfermetric Fiber Optic Hydrophone (실험을 통한 간섭계형 광섬유 청음기의 음향신호 감지성능 연구)

  • 이종길;윤형규;설재수;남성현
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.931-936
    • /
    • 1997
  • Optical fiber sensor is a subject which has been attracted considerable attention in recent years. Detection of sound pressure with optical fibers positioned in the arms of a Mach-Zehnder interferometer is presented in this paper. A fiber length of the order of 150m is wounded is made by hollow cylinder type. To increase the sound signal 3${\times}3$ directional coupler is used. Fiber optic hydrophone is the underwater tank with 2kHz sound source. Finally, it is shown that the fiber optic hydeophone can stably detec 2kHz sound.

  • PDF

Energy Spectrum of Underwater Explosive Sound (수중 폭발음의 에너지 스펙트럼)

  • Kim, Sung-Boo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.56-61
    • /
    • 1990
  • A New theoretical energy spectrum model for underwater explosive sound is introduced in order to calculate the precise spectral energy levels. This model is obtained by Fourier analysis of Gaussian formula which accurately represents the pressure wave generated from Underwater explosions. In case that explosive energy is very low. The spectrum levels which are obtained from the new theoretical model are in good agreement with the experimental spectrum levels, while the Weston model using impulse formula cannot interpret the experimental results.

  • PDF

A Response of the Shoal of Chub Mackerel ( Scomber Japonics , HOVTTYUN ) to Underwater Sound (수중음에 대한 고등어 어군의 반응)

  • 서두옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.1
    • /
    • pp.12-17
    • /
    • 1989
  • A field experiment was carried out of confirm the effect of underwater sound on the luring of fish school of chub mackerel in the coast of Idousyo Island. Underwater sound that was made use of luring of fish school was pure sound and interval pure sound which the frequencies of the sound were 150Hz and 200Hz, respectively. The results of the observation of hooking and recording paper of fish finder indicate that the effect of emitting sound at 20m in the depth of water was remarkable for the luring of fish school of chub mackerel. The vertical pure sound pressure level at 150Hz and 200Hz of the water layer that was lured the fish school of chub mackerel were 140.1dB and 146.dB at 30m, 121.0dB and 126.6dB at 70m and 141.9dB and 120.5dB at 120m in the depth of water, respectively.

  • PDF

Numerical Prediction of Underwater Propeller Noise (블레이드 형상변화에 따른 수중 추진기 방사 소음 예측에 관한 연구)

  • Seol, Han-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.344-347
    • /
    • 2006
  • Noise reduction and control is an important problem in the performance of underwater acoustic system and on the habitability of the passenger ship for crew and passenger. Furthermore, sound generated by a propeller is critical in underwater detection and is often related to the survivability of the vessel especially for military purpose. Generally propeller noise is often the dominant noise source of marine vehicle. The flow field is analyzed with potential-based panel method, and then the time dependent pressure and sheet cavity volume data are used as the input for Ffowcs Williams-Hawkings formulation to predict the far-field acoustics. Through this study, the dominant noise source of underwater propeller is analyzed, which will provide a basis for proper noise control strategies.

  • PDF

SONAR transducer analysis using a coupled FE-BE method (결합형 유한요소-경계요소 기법을 사용한 쏘나 트랜스듀서의 분석)

  • 장순석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1750-1753
    • /
    • 1997
  • This paper describes how the directivity pattern of the back-scattered sound pressure is distributed when a plane acoustic wave is incident on a righid spherical shell underwater. A coupled Finite Element-Boundary Element mehtod is developed as numerical technique. The result of the coupled FE-BE method is agreed with theoretical solution for algorithmic confirmation.

  • PDF