• Title/Summary/Keyword: Underwater simulation

Search Result 617, Processing Time 0.027 seconds

Design and Performance Evaluation of Hierarchical Protocol for Underwater Acoustic Sensor Networks (수중음파 센서네트워크를 위한 계층별 프로토콜의 설계 및 성능 평가)

  • Kim, Ji-Eon;Yun, Nam-Yeol;Kim, Yung-Pyo;Shin, Soo-Young;Park, Soo-Hyun;Jeon, Jun-Ho;Park, Sung-Joon;Kim, Sang-Kyung;Kim, Chang-Hwa
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.157-166
    • /
    • 2011
  • As underwater environment monitoring system's interest has increased, the research is proceeding about underwater acoustic sensor network. Underwater sensor network can be applicable to many fields, such as underwater environment monitoring, underwater resource exploration, oceanic data collection, military purposes, etc. It is essential to define the PHY-MAC protocol for revitalization of the underwater acoustic sensor network which is available utilization in a variety of fields. However, underwater acoustic sensor network has to implement by consideration of underwater environmental characteristics, such as limited bandwidth, multi-path, fading, long propagation delay caused by low acoustic speed. In this paper, we define frequency of adjusted PHY protocol, network topology, MAC protocol, PHY-MAC interface, data frame format by consideration of underwater environmental characteristics. We also present system configuration of our implementation and evaluate performance based on our implementation with test in real underwater field.

An Analysis of Highlight Distribution Modeling for High Frequency CW Pulse Signal Reflection on Underwater Target (수중표적의 고주파수 CW 펄스신호 반사를 위한 하이라이트 분포 모델링 해석)

  • 김부일;이형욱;박명호;권우현
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.3
    • /
    • pp.1-11
    • /
    • 2000
  • This paper proposes the practical echo-signal synthesis models - UTAHID (Underwater TArget by Highlight Distribution) & M-UTAHID(Modified UTAHID) - of underwater target for active sonar engineering At high frequencies all the echo components that are the specular reflected waves and various elastic scattering wave scan be regarded the summation of individual echo from some equivalent scattering centers, so the underwater target is characterized by highlights distributed in spatial target structure. Proposed models are compared with characteristics of random distributed model & equivalent interval highlight model, and analyzed target strength, echo-elongation effect, target time spread loss and so on. Thus these can be efficiently used in various real systems related to underwater target echo-signal synthesis on active sonar and acoustic countermeasure.

  • PDF

Analysis of the Dynamic Characteristics of the Underwater Discharge System using a Centrifugal Pump (원심펌프 방식 수중발사 시스템의 동특성 해석)

  • Jung, Chan-Hee;Park, In-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.594-600
    • /
    • 2012
  • In this study, the mathematical model of the underwater discharge system using a centrifugal pump was derived and the rotating speed profiles of the pump which satisfied the discharge performance requirements were obtained through the underwater discharge simulations. The simulation results showed that the dynamic characteristics of a projectile were greatly affected by the rotational speed of the pump, however, hardly by the discharge depth. It is anticipated that the simulation model can be used to derive the design parameters and analyze the performance concerning the underwater discharge system using a centrifugal pump.

Analysis of the Dynamic Characteristics of the Underwater Discharge System using a Linear Pump (선형펌프 방식 수중발사 시스템의 동특성 해석)

  • Park, In-Ki;Jung, Chan-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.11-17
    • /
    • 2005
  • In this paper, the mathematical model of the underwater discharge system using a linear pump is derived and the suitable opening pattern of a flow control valve which satisfies the discharge performance requirements is obtained through the underwater discharge simulations. The simulation results show that the dynamic characteristics of a projectile are greatly affected by the opening pattern of the flow control valve, however, hardly by the diving depth. It is anticipated that the simulation model can be used to derive the design parameters and analyze the performance of the designed underwater discharge system using a linear pump.

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar;Prashant Kumar
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.379-393
    • /
    • 2023
  • Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.

A Study on Implementation of Monitoring System of Distributed Simulation for Underwater Warfare (수중 교전 모의를 위한 HLA/RTI 기반 시뮬레이션의 모니터링 시스템 구축 연구)

  • Hwam, Won K.;Chung, Yongho;Choi, Jong-Yeob;Park, Sang C.
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.73-83
    • /
    • 2013
  • This paper presents design and implementation of the monitoring system for the distributed simulation of underwater warfare. As importance of defense modeling and simulation(M&S) has raised, Simulation-Based Acquisition(SBA) was authorized for an obligatory process in the development process of weapon systems. Yet, it requires tremendous resources to develop a large-scale simulation system that describes complex and broad battlefields. Therefore, an approach of the distributed system was devised to develop a new simulation system combining legacy simulators that were developed for confined purpose and sole operations. High-Level Architecture(HLA) of distributed systems is a standardized protocol by IEEE for the distributed simulation system and Run-Time Infrastructure(RTI) is an implementation of HLA to structure efficient distributed systems. The main objective of this paper is to derive appropriate monitoring factors for underwater warfare simulation, design and implementation of the monitoring system to analyze the factors based on HLA/RTI.

Underwater Navigation of an Autonomous Underwater Vehicle Using Range Measurements from a Fixed Reference Station (고정기준점에 대한 거리측정 신호를 이용하는 자율무인잠수정의 수중항법)

  • Lee, Pan-Mook;Jun, Bong-Huan;Lim, Yong-Kon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.106-113
    • /
    • 2008
  • This paper presents an underwater navigation system based on range measurements from a known reference station fixed on the sea bottom or floated at surface with a buoy, for which the system is extended to 3-dimensional coordinates. We formulated a state equation in polar coordinates and constituted an extended Kalman filter for discrete-time implementation of the navigation algorithm. The autonomous underwater vehicle, lSiMl, cruising with a constant speed can estimate its trajectory using just range measurements and additional depth, heading and pitch sensors. Simulation studies were performed to evaluate the underwater navigation of the maneuvering AUV with range measurements. We modulated the sample rate of range measurements to evaluate the effect of the update rate, and changed the initial position error of the AUV to check the robustness to estimation errors. Simulation results illustrates that the extended navigation system provides convergence of the state estimates. The navigation system was conditionally stable when it had initial position errors.

$H_\infty$ Depth Controller Design for Underwater Vehicles (수중운동체의 $H_\infty$ 심도제어기 설계)

  • 이만형;정금영;김인수;주효남;양승윤
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

Fluid Simulation Control for Effective VFX Underwater Explosion Effects (효과적인 VFX 수중 폭발효과 구현을 위한 유체 시뮬레이션 제어)

  • Hwang, Min Sik;Lee, Hyunseok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1606-1618
    • /
    • 2017
  • The explosion effect of computer graphics Visual Effects(VFX) used in films and animations is an important element that determines the completeness of the film, and its usage is getting extended. The realistic explosion effect of VFX should be made according to observations and analysis of various factors of actual explosion in real world. This experimental research would suggest the efficient production guideline for the technical characteristics of underwater explosion of VFX. For this research process, first, the comparison of actual explosion and VFX explosion effect, classification of actual explosion, and characteristics of underwater explosion effect will be addressed. Second, based on the literature reviews, the four steps of experimental production analysis tool will be derived. Third, the experimental research will be processed in along with technical factors four steps of the underwater explosion effect, (1)realistic creation and emission of fluid, (2)fluid expansion control by water pressure, (3)bubble effect, and (4)motion of bubble & dissipation of fluid. The effective method of fluid simulation production will be verified through experimental studies based on the characteristics of the actual explosion process. This experimental study suggested the VFX production technique is expected to be used as the basic data for related research field.

Bio-inspired Walking and Swimming Underwater Robot Designing Concept and Simulation by an Approximated Model for the robot (유영과 보행이 가능한 생체모방 수중 로봇의 설계개념과 근사모델을 활용한 모의실험)

  • Kim, Hee-Joong;Jun, Bong-Huan;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.57-66
    • /
    • 2014
  • This paper describes the design concept of a bio-inspired legged underwater and estimating its performance by implementing simulations. Especially the leg structure of an underwater organism, diving beetles, is fully adopted to our designing to employ its efficiency for swimming. To make it possible for the robot to both walk and swim, the transformable kinematic model according to applications of the leg is proposed. To aid in the robot development and estimate swimming performance of the robot in advance, an underwater simulator has been constructed and an approximated model based on the developing robot was set up in the simulation. Furthermore, previous work that we have done, the swimming locomotion produced by a swimming patten generator based on the control parameters, is briefly mentioned in the paper and adopted to the simulation for extensive studies such as path planning and control techniques. Through the results, we established the strategy of leg joints which make the robot swim in the three dimensional space to reach effective controls.