• Title/Summary/Keyword: Underwater concrete structures

Search Result 35, Processing Time 0.031 seconds

High-strength Antiwashout Underwater Concrete Containing the GGBF Slag (고로슬래그 미분말을 혼합한 고강도 수중불분리성 콘크리트)

  • 문한영;송용규;전중규;김태욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.199-202
    • /
    • 1999
  • Recently, the antiwahout underwater concrete with an natiwashout admixture has been increasingly used for underwater structures. However, the credibility of antiwahout underwater concrete was brought up as problems because it was seldom applied to fields. In this study, experiments were made on the basic properties of antiwashout underwater concrete replaced with GGBF Slag from 40% to 60% to improve its properties. Resultant to the test, we got the results as follows; the difference of U-type heght was decreased, and the slump flow was increased. Whereas the amount of suspended solids became high as to increasing the replacement ratio of GGBF Slag, pH value became low. Beacause the ratio of compressive strengths (in water compared to in air) at 28days was obtained over 90%, its value is satisfied with 70% of a criterion.

  • PDF

Properties of Antiwashout Underwater Concrete Containing Fly Ash (플라이애시를 혼합한 수중불분리성 콘크리트의 제물성)

  • 문한영;김성수;이재준;전중규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.609-612
    • /
    • 1999
  • Recently, the antiwashout underwater concrete with an antiwashout admixtures has been increasingly used for underwater structures. However, the credibility of antiwashout underwater concrete was brought up as problems because it seldom was applied to fields. In this study, experiments were made on the basic properties of antiwashout underwater concrete replaced with fly ash up to 30% to improve its properties. Resultant to the test, we got the results as follow; funnel flow time was decreased, the slump flow was increased and the elevation of head was decreased rapidly whereas the amount of suspended solids became high, pH became low. In view of 70%, the standard ratio of compressive strengths between cast in water and in air, it was obtained the result that the ratio was over 90% at 28days.

  • PDF

An Experimental Study on the Optimal Mix Proportion for Antiwashout Underwater Concrete (수중불분리성 혼화제를 첨가한 콘크리트의 최적배합비에 관한 실험적 연구)

  • 조선규
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.179-187
    • /
    • 1996
  • Many underwater concrete structures have been constructed recently in proportion to the increase of ocean developments. The research for the underwater concrete construction was mainly focused in view of placing method. Recently, special admixture agents of concrete were developed for antiwashout concrete under water in some foreign nations. They had successful results in experiments and site constructions. However. there are seldom experimental results or placements in domestic contry. In this paper. We had carried out property tests of fresh and hardened concrete with refer to successful results in experiments and site construction and investigated the physical variation of the antiwashout underwater concrete considering the interaction between antiwashout admixture and other ones. We have decided the optimal mix proportion fb;r antiwashout underwater concrete under standerd sea state.

An Experimental Study on the Water Tightness of Fly Ash Antiwashout Underwater Concrete (플라이애시 수중불분리성 콘크리트의 수밀성에 관한 실험적 연구)

  • Kwon, Jung-Hyun;Kim, Bong-Ik
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.40-45
    • /
    • 2008
  • This paper describes the effects of fly ash replacement on the water tightness of antiwashout underwater concrete, which replaced the cement with fly ash from 0% to 30%. The experimental work was performed to find out the depth of permeation of concrete specimens cast in air and cured in 23 $^{\circ}C$ tap water using an open center pressure type of water permeation tester. The results showed that the permeation depth values of antiwashout underwater concrete were deeper than normal concrete, but that an admixture using fly ash during antiwashout underwater concrete casting in air made it more watertight than normal concrete according to the water permeation testing. SEM observations of the specimens of fly ash antiwashout underwater concrete showed that it wasmore packed with structures because of the pozzolan reaction of the fly ash and cement.

Assessment on the Seawater Attack Resistance of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 해수침식에 대한저항성 평가)

  • 문한영;김성수;안태송;이승태;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.683-688
    • /
    • 2001
  • In case of constructing the concrete structures under seawater environment, the concrete suffers from deterioration due to penetration of various ions such as chloride, sulfate and magnesium in seawater. Tn the present study, Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of antiwashout underwater concrete. From the results of compressive strength, it was found that blended cement concrete due to mineral admixtures such as fly ash(FA) and ground granulated blast-furnace slag(SGC), were superior to ordinary portland cement concrete with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the formed reactants of ordinary portland cement paste by sulfate and magnesium ions led to the deterioration of concrete. As expected, however, the blended cements with FA or SGC have a good resistance to seawater attack. This paper would discuss the mechanism of seawater deterioration and benefical effects of antiwashout underwater concretes with mineral admixtures.

  • PDF

The Basic Study on the Underwater-Hardening Epoxy Mortar Using Stone Powder Sludge (석분슬러지를 이용한 수중 경화형 에폭시 모르타르의 개발에 관한 기초적 연구)

  • Jung Eun-Hye;Kawg Eun-Gu;Bae Dae-Kyung;Cho Sung-Hyun;Bae Kee-Sun;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.409-412
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performances are considered in structures. In generally, epoxy mortar is used to repair materials of underwater concrete. It is divided epoxy and filler which is organized cement and sand. Cement can be replaced by stone powder sludge in waste because the grading of stone powder sludge in drying state has similar to that of cement. As result of study, it is possible that stone powder sludge can be applied for replacement materials of cement in epoxy mortar, because the strength is not different when filler in epoxy mortar is alternated stone powder sludge.

  • PDF

The Engineering Properties of Underwater-Hardening Epoxy Mortar According to the Replacement Proportion of RCSS (급냉 제강 슬래그의 대체율에 따른 수중 경화형 에폭시 모르타르의 공학적 특성)

  • Kawg Eun-Gu;Cho Sung-Hyun;Park Sang-Hun;Bae Kee-Sun;Chang Won-Seok;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.401-404
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performance are considered in structures. Epoxy mortar in the underwater used to the repair and reinforcement for durability. Epoxy mortar in the underwater-harding maked epoxy and filler. Filler is divided aggregate and powder system. Because aggregate take a matter too seriously to supply that alternation material is used to rapidly chilled steel slag. As result of study, it is possible that rapidly chilled steel slag can be applied for replacement materials about aggregate in epoxy mortar because the strength is not different.

  • PDF

Characteristic of New Materials for Repairing/Reinforcement of Sea and Underwater Structures using Urethane (우레탄을 이용한 해양 및 수중구조물의 보수/보강용 신소재 특성)

  • Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • In this study, characteristic of new materials for repairing/reinforcement of sea and underwater structures using urethane were studied experimentally. As a results, following their good result was obtained. Materials and construction methods due to a chemical reaction, so no seams, shape or form, regardless of the variety of civil engineering in the field can be applied. Fast workability, hardening existing concrete compared with 80% in shortening. Than the existing large concrete pouring construction cost could be reduced by more than 30%.

Evaluation of Bond Strength It Durability of Repairing Materials for Underwater Concrete Structures (수중 보수재료의 부착강도 및 내구성능 평가)

  • 손영현;임치중;김완상;김세준;서정우;박영석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.829-834
    • /
    • 2002
  • Recently, research and development for a number of repairing material like an epoxy-based material and polymer-cementitious material as well as anti-washout underwater concrete have been carried out. But, the study on tile materials for the concrete structure exposed to a wetted condition is at a standstill and there are not any suitable reference data at a repairing work for the concrete structure at a splash as well as a structure under severe moisture condition. In this study, the material, called as “ceramic metal”, with an excellent mobility and plasticity as well as with a high bond strength and durability of freezing-thawing resistant properties under any environmental conditions was developed. And, the experimental evaluations for the utility wert widely performed.

  • PDF

A Study on Compressive Strength Estimation of Underwater Concrete Structures According to Water Depths (수중 콘크리트 구조물의 수심별 강도 추정에 관한 연구)

  • Lee, Jisung;Han, Sanghun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • Harbor facilities require long-term durability and safety, and also maintain the performance requirement until the durability life. However, existing harbor facilities are becoming superannuated with durable years and durability is declined by erosion of the sea and damage from sea. In addition, harbor facilities will be in demand for the expansion of harbor and offshore structures with rising economic power by enhancement of domestic industry and increase of import and export. Therefore, in this study, two kinds of nondestructive test (NDT) techniques (schmidt rebound hammer and ultrasonic sensor) are verified for the effective maintenance of underwater concrete structures including harbor facilities. Sea field applicability of Schmidt hammer and ultrasonic sensor was verified by comparing field test result with sea field test result and also deduced the compressive strength estimation equation by depth of the water. On the basis of the sea field test result, compressive strength estimation equation which was deduced by multiple regression analysis indicated highest accuracy compared to other equations, especially it will be more likely to be used in underwater because of the depth of water correction. In the future, if schmidt hammer and ultrasonic sensor which were invented as waterproofing are used with ROV (Remotely Operated Vehicle), it will be possible to make a diagnosis of high reliability for underwater concrete structures and set up a ubiquitous concept of NDT system.