• Title/Summary/Keyword: Underwater casting

Search Result 11, Processing Time 0.025 seconds

A Fundamental Study on the Antiwashout Underwater Concrete for the Underwater Work of Ocean (수중불분리성 콘크리트의 해양공사 적용에 관한 기초적 연구)

  • 김명식;윤재범;박세인
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.25-34
    • /
    • 2000
  • When concrete is placed underwater, it is diluted with separating cementitious material and as a result the quality of concrete becomes poor. To solve this problem, antiwashout underwater concrete is increasingly used for the construction and repair of the concrete structure underwater. The objective of this study is to investigate the characteristics of antiwashout underwater concrete as to the mix proportion, casting and curing water through experimental researches. The unit weight of water and cement, water-cement ratio, fine aggregate ratio, unit weight of antiwashout underwater agent and superplasticizer, and casting and curing water were chosen to measure the suspended solids, pH, air contents, slump flow, unit weight of hardened concrete, and compressive strength. From this study, the incremental modulus at mix proportion design and unit weight of antiwashout underwater agent were increased more than fresh water, and it is a optimum mix proportion that the unit weight of water(and cement) is 230kg/$\textrm{m}^3$(460kg/$\textrm{m}^3$), waterOcement ratio is 50%, fine aggregate ratio is 40%, unit weight of antiwashout underwater agent is 1.2% of water contents per unit weight of concrete, and unit weight of supeplasticizer is 2.5% of cement contents per unit weight of concrete when the antiwashout underwater concrete is used for the underwater work of ocean.

Study on the Properties of Antiwashout Underwater Concrete as to Fine aggreate Kinds (잔골재의 종류에 따른 수중불분리성 콘크리트의 특성에 관한 연구)

  • 박세인;신현필;이환우;김종수;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.941-946
    • /
    • 2001
  • In this study, three kinds of fine aggregate (river sand, sea sand, crushed sand) were used and four different s/a (38%, 40%, 42%, 45%) were applied separately to this experimental for get the conclusion written below. Regardless of kinds of fine aggregate and casting-curing condition, maximum unit weight is seen at 40% of s/a and also to be seen in case of crushed sand. It's for that specific gravity of crushed sand is bigger comparatively than river sand and sea snad's one. Compressive strength is measured river sand, crushed sand, sea sand by order of size ; Regardless of variation of s/3, casting-curing condition and age. Compressive strength recorded maximum when s/a is 42% whatever sort of fine aggregate are. As the result, according to references, the optimum s/a of underwater antiwashout concrete is 40% but in this study, from compressive strength of view, the optimum s/a of underwater antiwashout concrete is 42%.

  • PDF

Study on the Properties of Antiwashout Underwater Concrete with Variation of Mixing Proportion of Fine Aggregate Types (잔골재의 혼합비율 변화에 따른 수중불분리성 콘크리트의 특성에 관한 연구)

  • 배원만;박세윤;백동일;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.533-536
    • /
    • 2003
  • The objective of in this study makes investigation into the characteristics of antiwashout underwater concrete as to mix proportion, casting and curing water through experimental researches. in this study, sea sand is blended with river sand, crushed sand is blended with river sand and sea sand as to investigate the quality change and characteristics of antiwashout underwater concrete with variation of blend ratio of sea sand and crushed sand(0, 20, 40, 60, 80, 100%). Higher compressive strength is measured following the order of river sand, sea sand, crushed sand regardless of age and casting condition. Except for case of using river sand, blended ratio of 40% is appeared on most compressive strength.

  • PDF

The Evaluation of Bed Protection as Placing Methods of Mortar (모르타르 타설 방법에 따른 하상보호공의 안정성 평가)

  • Kim, Jong-Tae;Kim, Chang-Sung;Kang, Joon-Gu;Yeo, Hong-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1102-1108
    • /
    • 2014
  • This study was to compare the protection abilities of an SPF through ground or underwater casting. A mat of 1/10 scale was made and then mortar was placed on the ground and submerged conditions. A limit velocity of each mat was estimated with this experiment. As a result of the test, the mat failed because of the decrease of bearing power in the center of the waterway. On the one hand, the edge of the mat, where the velocity is slow, secures stability. The result of the limit velocity analysis suggests that a velocity of ground placement with 6.51m/s and underwater casting with 9.80m/s is the minimum to ensure stability. When SPF mat with a thickness of 0.50m is replaced with a concrete block, it is calculated to need a maximum thickness of 2.21m.

An Experimental Study on the Characteristics of Compressive Strength of Antiwashout Underwater Concrete with Curing Water (양생수에 따른 수중불분리콘크리트의 압축강도특성에 관한 실험적 연구)

  • 윤재범;고창섭;김명식;장희석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.135-138
    • /
    • 1999
  • The objective of this study is to investigate the compressive strength property of antiwashout underwater concrete with curing water through experimental researches. Type of casting and curing water(fresh water, sea water) are used as main experimental parameter, additionally a few variables affecting compressive strength property are used ; water-cement ratio (45%, 48%, 50%, 52%, 55%), and unit weight of admixtures (antiwashout underwater agent ; 0.6%, 0.8%, 1.0%, 1.2%, 1.4% of unit weight of water, superplasticizer ; 0.5%, 1.0%, 1.5%, 2.0%, 2.5% of unit weight of cement)) Compressive strength level of antiwashout underwater concrete which was cast and cured in fresh water is higher than other one. Consequently, incremental modulus has to increase when the antiwashout underwater concrete is made use of underwater work from ocean.

  • PDF

Bond Strength Properties of Antiwashout Underwater Concrete (수중 불분리성 콘크리트의 부착 강도 특성에 관한 연구)

  • 김명식;김기동;윤재범
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.89-99
    • /
    • 2000
  • The objective of this study is to investigate the bond strength properties of antiwashout underwater concrete. The arrangement of bars (vertical bar, horizontal upper bar, horizontal lower bar), condition of casting and curing (fresh water, sea water), type of fine aggregate (river sand, blended sand(river sand : sea sand = 1:1), and proportioning strength of concrete (210, 240, 270, 300, 330kgf/$\textrm{cm}^2$)are chosen as the experimental parameters. The test results(ultimate bond stress) are compared with bond and development provisions of the ACI Building Code(ACI 318-89) and proposed equations from previous research(which was proposed by Orangun et. al). The experimental results show that ultimate bond stress of antiwashout underwater concrete which arranged bar on the horizontal lower, used the blend sand, and was cast and cured in the fresh water are higher that other conditions. The ultimate bond stress were increased in proportion to {{{{( SQRT {fcu }) }}3 2. From this study, rational analytic formula for the ultimate bond stress are to be from compressive strength of concrete.

Two-Dimensional Analysis of Pressure Distribute by Underwater Electric Discharge (수중방전에 의한 압력분포의 2차원 해석)

  • Kim, Y.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.68-77
    • /
    • 1995
  • The two-dimensional pressure distribution, which is the most important parameter in the casting cleaning installations(CCI), was analyzed using the K-FIX computer program for two-phase flow. Modelling was done using R-Z coordinates for the initial and boundary conditions which don't have periodic influx and efflux, and also there was the electric discharge due to high pressure and temperature. The marked particles were introduced to prodict the structure and the size of main and local moving surfaces. The initial and boundary conditions were modified due to the internal structure of CCI.From the results of numerical analysis, it was shown that the maximum pressure on casting was increased with the increase of a water level. The pressure on casting in the radial direction was higher than that in axial direction. Also, it was proved that by introducing the marked particles it was possible to predict the surface structure in case of two-phase flow.

  • PDF

An Experimental Study on the Water Tightness of Fly Ash Antiwashout Underwater Concrete (플라이애시 수중불분리성 콘크리트의 수밀성에 관한 실험적 연구)

  • Kwon, Jung-Hyun;Kim, Bong-Ik
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.40-45
    • /
    • 2008
  • This paper describes the effects of fly ash replacement on the water tightness of antiwashout underwater concrete, which replaced the cement with fly ash from 0% to 30%. The experimental work was performed to find out the depth of permeation of concrete specimens cast in air and cured in 23 $^{\circ}C$ tap water using an open center pressure type of water permeation tester. The results showed that the permeation depth values of antiwashout underwater concrete were deeper than normal concrete, but that an admixture using fly ash during antiwashout underwater concrete casting in air made it more watertight than normal concrete according to the water permeation testing. SEM observations of the specimens of fly ash antiwashout underwater concrete showed that it wasmore packed with structures because of the pozzolan reaction of the fly ash and cement.

Underwater Geometry of the Anchovy Boat Seine in Process of the Fishing Operation (기선권현망어구의 조업과정중 수중형상)

  • An, Young-Su;Jang, Choong-Sik;Lee, Myeong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.2
    • /
    • pp.101-106
    • /
    • 2005
  • This study was carried out to observe the underwater geometry of the anchovy boat seine by two fishing operation systems. One was a traditional operation system that used a fish detecting boat, another was a new operation system that used the same fishing gear with floats and sinkers in comparison with a fish detecting boat. Vertical opening of the fishing gear that used a casting net, working depth of each part of the fishing gear that used a new operation system was almost canstant, but was gradually shallow in a traditional operation system. Just before hauling net, working depth of each part of the fishing gear that used a new operation system was maintained stable, but was vertically unstable in a traditional operation system because as rear part of the fishing gear was risen up the upper layer. Just after hauling net, working depth of the fishing gear that used a new operation system was also maintained stable, and then anchovy school could be lead to bag net.

Study on the Properties of Antiwashout Underwater Concrete with Variation of Blend Ratio of Crushed Sand (부순모래 혼입률 변화에 따른 수중불분리성 콘크리트의 특성 연구)

  • 박세인;오광영;이환우;김종수;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.427-432
    • /
    • 2001
  • In this study, crushed sand is blended with river sand and sea sand, to investigate the quality change of antiwashout underwater concrete with variation of blend ratio of crushed sand(0%, 20%, 40%, 60%, 80%, 100%). To see experiment conclusion, the more blend ratio of crushed sand increases, the more unit weight increases. Because the for that specific gravity of crushed sand is higher comparatively than that of river sand and sea sand. Higher compressive strength is measured following the order of river sand, crushed sand, sea sand regardless of age and casting-curing condition. Except for case of using river sand, blend ratio of 40% is appeared on most compressive strength. So the optimum blend ratio of crushed sand is 40% from the view point of compressive strength.

  • PDF