• 제목/요약/키워드: Underwater casting

검색결과 11건 처리시간 0.024초

수중불분리성 콘크리트의 해양공사 적용에 관한 기초적 연구 (A Fundamental Study on the Antiwashout Underwater Concrete for the Underwater Work of Ocean)

  • 김명식;윤재범;박세인
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.25-34
    • /
    • 2000
  • When concrete is placed underwater, it is diluted with separating cementitious material and as a result the quality of concrete becomes poor. To solve this problem, antiwashout underwater concrete is increasingly used for the construction and repair of the concrete structure underwater. The objective of this study is to investigate the characteristics of antiwashout underwater concrete as to the mix proportion, casting and curing water through experimental researches. The unit weight of water and cement, water-cement ratio, fine aggregate ratio, unit weight of antiwashout underwater agent and superplasticizer, and casting and curing water were chosen to measure the suspended solids, pH, air contents, slump flow, unit weight of hardened concrete, and compressive strength. From this study, the incremental modulus at mix proportion design and unit weight of antiwashout underwater agent were increased more than fresh water, and it is a optimum mix proportion that the unit weight of water(and cement) is 230kg/$\textrm{m}^3$(460kg/$\textrm{m}^3$), waterOcement ratio is 50%, fine aggregate ratio is 40%, unit weight of antiwashout underwater agent is 1.2% of water contents per unit weight of concrete, and unit weight of supeplasticizer is 2.5% of cement contents per unit weight of concrete when the antiwashout underwater concrete is used for the underwater work of ocean.

잔골재의 종류에 따른 수중불분리성 콘크리트의 특성에 관한 연구 (Study on the Properties of Antiwashout Underwater Concrete as to Fine aggreate Kinds)

  • 박세인;신현필;이환우;김종수;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.941-946
    • /
    • 2001
  • In this study, three kinds of fine aggregate (river sand, sea sand, crushed sand) were used and four different s/a (38%, 40%, 42%, 45%) were applied separately to this experimental for get the conclusion written below. Regardless of kinds of fine aggregate and casting-curing condition, maximum unit weight is seen at 40% of s/a and also to be seen in case of crushed sand. It's for that specific gravity of crushed sand is bigger comparatively than river sand and sea snad's one. Compressive strength is measured river sand, crushed sand, sea sand by order of size ; Regardless of variation of s/3, casting-curing condition and age. Compressive strength recorded maximum when s/a is 42% whatever sort of fine aggregate are. As the result, according to references, the optimum s/a of underwater antiwashout concrete is 40% but in this study, from compressive strength of view, the optimum s/a of underwater antiwashout concrete is 42%.

  • PDF

잔골재의 혼합비율 변화에 따른 수중불분리성 콘크리트의 특성에 관한 연구 (Study on the Properties of Antiwashout Underwater Concrete with Variation of Mixing Proportion of Fine Aggregate Types)

  • 배원만;박세윤;백동일;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.533-536
    • /
    • 2003
  • The objective of in this study makes investigation into the characteristics of antiwashout underwater concrete as to mix proportion, casting and curing water through experimental researches. in this study, sea sand is blended with river sand, crushed sand is blended with river sand and sea sand as to investigate the quality change and characteristics of antiwashout underwater concrete with variation of blend ratio of sea sand and crushed sand(0, 20, 40, 60, 80, 100%). Higher compressive strength is measured following the order of river sand, sea sand, crushed sand regardless of age and casting condition. Except for case of using river sand, blended ratio of 40% is appeared on most compressive strength.

  • PDF

모르타르 타설 방법에 따른 하상보호공의 안정성 평가 (The Evaluation of Bed Protection as Placing Methods of Mortar)

  • 김종태;김창성;강준구;여홍구
    • 한국산학기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.1102-1108
    • /
    • 2014
  • 본 연구는 육상 및 수중 타설을 통한 SPF 공법의 하상보호능력을 평가하는 것이 목적이다. 이를 위해 실제 하상보호공의 1/10 축소모형 매트를 제작하여 육상과 수중에서 모르타르를 타설했으며 실험을 통해 각 매트의 한계유속을 평가하였다. 실험 결과 매트는 대부분 수로 중앙부의 지지력 감소로 파괴가 발생했으며 상대적으로 유속이 약한 수로 가장자리에서 안정성을 확보하였다. 한계유속 분석 결과 육상타설은 6.51 m/s, 수중타설의 경우 9.80 m/s가 안정성을 확보할 수 있는 유속인 것으로 나타났으며 0.50 m 두께의 SPF매트를 콘크리트 블록으로 대체할 경우 최대 2.21 m 두께가 필요한 것으로 계산되었다.

양생수에 따른 수중불분리콘크리트의 압축강도특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Compressive Strength of Antiwashout Underwater Concrete with Curing Water)

  • 윤재범;고창섭;김명식;장희석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.135-138
    • /
    • 1999
  • The objective of this study is to investigate the compressive strength property of antiwashout underwater concrete with curing water through experimental researches. Type of casting and curing water(fresh water, sea water) are used as main experimental parameter, additionally a few variables affecting compressive strength property are used ; water-cement ratio (45%, 48%, 50%, 52%, 55%), and unit weight of admixtures (antiwashout underwater agent ; 0.6%, 0.8%, 1.0%, 1.2%, 1.4% of unit weight of water, superplasticizer ; 0.5%, 1.0%, 1.5%, 2.0%, 2.5% of unit weight of cement)) Compressive strength level of antiwashout underwater concrete which was cast and cured in fresh water is higher than other one. Consequently, incremental modulus has to increase when the antiwashout underwater concrete is made use of underwater work from ocean.

  • PDF

수중 불분리성 콘크리트의 부착 강도 특성에 관한 연구 (Bond Strength Properties of Antiwashout Underwater Concrete)

  • 김명식;김기동;윤재범
    • 콘크리트학회논문집
    • /
    • 제12권1호
    • /
    • pp.89-99
    • /
    • 2000
  • The objective of this study is to investigate the bond strength properties of antiwashout underwater concrete. The arrangement of bars (vertical bar, horizontal upper bar, horizontal lower bar), condition of casting and curing (fresh water, sea water), type of fine aggregate (river sand, blended sand(river sand : sea sand = 1:1), and proportioning strength of concrete (210, 240, 270, 300, 330kgf/$\textrm{cm}^2$)are chosen as the experimental parameters. The test results(ultimate bond stress) are compared with bond and development provisions of the ACI Building Code(ACI 318-89) and proposed equations from previous research(which was proposed by Orangun et. al). The experimental results show that ultimate bond stress of antiwashout underwater concrete which arranged bar on the horizontal lower, used the blend sand, and was cast and cured in the fresh water are higher that other conditions. The ultimate bond stress were increased in proportion to {{{{( SQRT {fcu }) }}3 2. From this study, rational analytic formula for the ultimate bond stress are to be from compressive strength of concrete.

수중방전에 의한 압력분포의 2차원 해석 (Two-Dimensional Analysis of Pressure Distribute by Underwater Electric Discharge)

  • Kim, Y.S.
    • 한국정밀공학회지
    • /
    • 제12권1호
    • /
    • pp.68-77
    • /
    • 1995
  • The two-dimensional pressure distribution, which is the most important parameter in the casting cleaning installations(CCI), was analyzed using the K-FIX computer program for two-phase flow. Modelling was done using R-Z coordinates for the initial and boundary conditions which don't have periodic influx and efflux, and also there was the electric discharge due to high pressure and temperature. The marked particles were introduced to prodict the structure and the size of main and local moving surfaces. The initial and boundary conditions were modified due to the internal structure of CCI.From the results of numerical analysis, it was shown that the maximum pressure on casting was increased with the increase of a water level. The pressure on casting in the radial direction was higher than that in axial direction. Also, it was proved that by introducing the marked particles it was possible to predict the surface structure in case of two-phase flow.

  • PDF

플라이애시 수중불분리성 콘크리트의 수밀성에 관한 실험적 연구 (An Experimental Study on the Water Tightness of Fly Ash Antiwashout Underwater Concrete)

  • 권중현;김봉익
    • 한국해양공학회지
    • /
    • 제22권4호
    • /
    • pp.40-45
    • /
    • 2008
  • This paper describes the effects of fly ash replacement on the water tightness of antiwashout underwater concrete, which replaced the cement with fly ash from 0% to 30%. The experimental work was performed to find out the depth of permeation of concrete specimens cast in air and cured in 23 $^{\circ}C$ tap water using an open center pressure type of water permeation tester. The results showed that the permeation depth values of antiwashout underwater concrete were deeper than normal concrete, but that an admixture using fly ash during antiwashout underwater concrete casting in air made it more watertight than normal concrete according to the water permeation testing. SEM observations of the specimens of fly ash antiwashout underwater concrete showed that it wasmore packed with structures because of the pozzolan reaction of the fly ash and cement.

기선권현망어구의 조업과정중 수중형상 (Underwater Geometry of the Anchovy Boat Seine in Process of the Fishing Operation)

  • 안영수;장충식;이명규
    • 수산해양기술연구
    • /
    • 제41권2호
    • /
    • pp.101-106
    • /
    • 2005
  • This study was carried out to observe the underwater geometry of the anchovy boat seine by two fishing operation systems. One was a traditional operation system that used a fish detecting boat, another was a new operation system that used the same fishing gear with floats and sinkers in comparison with a fish detecting boat. Vertical opening of the fishing gear that used a casting net, working depth of each part of the fishing gear that used a new operation system was almost canstant, but was gradually shallow in a traditional operation system. Just before hauling net, working depth of each part of the fishing gear that used a new operation system was maintained stable, but was vertically unstable in a traditional operation system because as rear part of the fishing gear was risen up the upper layer. Just after hauling net, working depth of the fishing gear that used a new operation system was also maintained stable, and then anchovy school could be lead to bag net.

부순모래 혼입률 변화에 따른 수중불분리성 콘크리트의 특성 연구 (Study on the Properties of Antiwashout Underwater Concrete with Variation of Blend Ratio of Crushed Sand)

  • 박세인;오광영;이환우;김종수;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.427-432
    • /
    • 2001
  • In this study, crushed sand is blended with river sand and sea sand, to investigate the quality change of antiwashout underwater concrete with variation of blend ratio of crushed sand(0%, 20%, 40%, 60%, 80%, 100%). To see experiment conclusion, the more blend ratio of crushed sand increases, the more unit weight increases. Because the for that specific gravity of crushed sand is higher comparatively than that of river sand and sea sand. Higher compressive strength is measured following the order of river sand, crushed sand, sea sand regardless of age and casting-curing condition. Except for case of using river sand, blend ratio of 40% is appeared on most compressive strength. So the optimum blend ratio of crushed sand is 40% from the view point of compressive strength.

  • PDF