• Title/Summary/Keyword: Underwater Target Position Tracking

Search Result 6, Processing Time 0.022 seconds

A Position Tracking of Underwater Moving Target using Image Tracking System of CPMC (CPMC의 이미지 추적장치를 이용한 수중운동체의 위치 추적)

  • Kim, Young-Shik;Jun, Bong-Huan;Choi, Jong-Su;Kim, Jin-Ha;Hong, Seok-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.355-358
    • /
    • 2006
  • An underwater mooing target position tracking system using image tracking system of CPMC is developed to use in a test basin. Generally the performance tests of Autonomous Underwater Vehicles(AUVs) are conducted in the sea. Some efforts to perform the test in a test basin are exist, because the real sea tests need much time and manpower. And also the real sea tests are high cost. There is a restriction to acquire the position of AUVs using sonar sensor system in the test tank, because many sound reflecters are exist in a test basin. In this paper a position tracking system for underwater mooing target developed to break though this restriction. A Tank-test is conducted to examine the performance of the position tracking system.

  • PDF

Bearing tracking algorithm appropriate for underwater environment (수중환경에 적합한 방위각 추적 알고리즘)

  • 허용석;김인익;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.558-563
    • /
    • 1992
  • Bearing information of target is used critically for target tracking in underwater environment. In passive sonar, target bearing measurements are obtained by processing the acoustic signal emanating from the target. PDA tracking algorithm is usually applied in this case since bearing measurements have several peaks due to interference with other acoustic sources or reflections from underwater media. In this paper, we propose a modified PDA algorithm adopting new probabilistic distributions of the number, position, and amplitude of peaks based on the analysis of real data. This algorithm is tested on real and artificially generated data. The computer simulation result shows improvement of the tracking performance.

  • PDF

A Study on Optimal Placement of Underwater Target Position Tracking System considering Marine Environment (해양환경을 고려한 수중기동표적 위치추적체계 최적배치에 관한 연구)

  • Taehyeong Kim;Seongyong Kim;Minsu Han;Kyungjun Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.400-408
    • /
    • 2023
  • The tracking accuracy of buoy-based LBL(Long Base Line) systems can be significantly influenced by sea environmental conditions. Particularly, the position of buoys that may have drifted due to sea currents. Therefore it is necessary to predict and optimize the drifted-buoy positions in the deploying step. This research introduces a free-drift simulation model using ocean data from the European CMEMS. The simulation model's predictions are validated by comparing them to actual sea buoy drift tracks, showing a substantial match in averaged drift speed and direction. Using this drift model, we optimize the initial buoy layout and compare the tracking performance between the center hexagonal layout and close track layout. Our results verify that the optimized layout achieves lower tracking errors compared to the other two layout.

Trajectory Tracking Performance Analysis of Underwater Manipulator for Autonomous Manipulation

  • Chae, Junbo;Yeu, Taekyeong;Lee, Yeongjun;Lee, Yoongeon;Yoon, Suk-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.180-193
    • /
    • 2020
  • In this study, the end-effector tracking performance of a manipulator installed on a remotely operated vehicle (ROV) for autonomous underwater intervention is verified. The underwater manipulator is an ARM 7E MINI model produced by the ECA group, which consists of six joints and one gripper. Of the six joints of the manipulator, two are revolute joints and the other four are prismatic joints. Velocity control is used to control the manipulator with forward and inverse kinematics. When the manipulator approaches a target object, it is difficult for the ROV to maintain its position and posture, owing to various disturbances, such as the variation in both the center of mass and the reaction force resulting from the manipulator motion. Therefore, it is necessary to compensate for the influences and ensure the relative distance to the object. Simulations and experiments are performed to track the trajectory of a virtual object, and the tracking performance is verified from the results.

Intelligent Range Decision Method for Figure of Merit of Sonar Equation (소나 방정식 성능지수의 지능형 거리 판단기법)

  • Son, Hyun Seung;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.304-309
    • /
    • 2013
  • This paper proposes a intelligent approach on range decision of figure of merit. Unknown range of the underwater target and the non-fixed signal excess make the uncertainty for the tracking process. Using the input data of signal excess related to the range, we establish the rule of the fuzzy set and the original data acquired by sonar can be transformed to the fuzzified data set. To reduce the error arisen from the unexpected data, we use the new data transformed in fuzzy set. The piecewise relations of the min value, max one, and the mean one are calculated. The three values are used for the expected range of the underwater target. By analysing the fluctuation of the data, we can expect the target's position and the characteristics of the maneuvering. The examples are presented to show the performance and the effectiveness of the proposed method.

Underwater Target Discrimination Using a Sequential Hypothesis Test (순차적 가설 검증을 이용한 수중 표적 판별)

  • Jeong, Young-Heon;Hong, Sun-Mog
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.6-14
    • /
    • 1996
  • In this paper we present an algorithm to discriminate an underwater target under track against an acoustic counter-measure(ACM) source, based on a sequential hypothesis test. The ACM source is separated from the target under track and generates, while drifting, measurements with false range and Doppler information. The purpose of the ACM is to mislead the target-tracking and to help the true target evade a pursuer. The algorithm uses as a test statistic a function of the innovation sequences from extended Kalman filters to estimate the target dynamics and the drifting position of the ACM source. Numerical experiments on various scenarios show that the proposed algorithm discriminates the target against an ACM source very fast with a high probability of success.

  • PDF