• Title/Summary/Keyword: Underwater Obstacle

Search Result 35, Processing Time 0.024 seconds

Application of LFM Reverberation Suppression Using Difference of Singular Values in the Underwater Obstacle Detection (수중 장애물 탐지에서의 특이 값 차이를 이용한 LFM 잔향 감소 기법 적용 연구)

  • Lee, Hyung-Soo;Kwon, Bum-Soo;Cho, Chom-Gun;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.755-760
    • /
    • 2009
  • In this paper, we apply a reverberation suppression method using difference of singular values to improve the short-distance underwater obstacle detection probability in reverberation environment induced by a linear frequency modulation signal. The reverberation suppression method using difference of singular values suppresses LFM reverberation based on subtracting the singular values for a reference beam, assumed to contain only the reverberation, from those for the current beam of interest, assumed to contain the reverberation and target echo. For the validation, the reverberation suppression method using difference of singular values is applied to real oceanic data, which are acquired using the cross type array.

Global Path Planning for Autonomous Underwater Vehicles in Current Field with Obstacles (조류와 장애물을 고려한 자율무인잠수정의 전역경로계획)

  • Lee, Ki-Young;Kim, Su-Bum;Song, Chan-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with the global path planning problem for AUVs (autonomous underwater vehicles) in a tidal current field. The previous researches in the field were unsuccessful at simultaneously addressing the two issues of obstacle avoidance and tidal current-based optimization. The use of a genetic algorithm is proposed in this paper to move past this limitation and solve both issues at once. Simulation results showed that the genetic algorithm could be applied to generate an optimal path in the field of a tidal current with multiple obstacles.

Development of P-SURO II Hybrid Autonomous Underwater Vehicle and its Experimental Studies (P-SURO II 하이브리드 자율무인잠수정 기술 개발 및 현장 검증)

  • Li, Ji-Hong;Lee, Mun-Jik;Park, Sang-Heon;Kim, Jung-Tae;Kim, Jong-Geol;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, we present the development of P-SURO II hybrid AUV (Autonomous Underwater Vehicle) which can be operated in both of AUV and ROV (Remotely Operated Vehicle) modes. In its AUV mode, the vehicle is supposed to carry out some of underwater missions which are difficult to be achieved in ROV mode due to the tether cable. To accomplish its missions such as inspection and maintenance of complex underwater structures in AUV mode, the vehicle is required to have high level of autonomy including environmental recognition, obstacle avoidance, autonomous navigation, and so on. In addition to its systematic development issues, some of algorithmic issues are also discussed in this paper. Various experimental studies are also presented to demonstrate these developed autonomy algorithms.

3D Global Dynamic Window Approach for Navigation of Autonomous Underwater Vehicles

  • Tusseyeva, Inara;Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • An autonomous unmanned underwater vehicle is a type of marine self-propelled robot that executes some specific mission and returns to base on completion of the task. In order to successfully execute the requested operations, the vehicle must be guided by an effective navigation algorithm that enables it to avoid obstacles and follow the best path. Architectures and principles for intelligent dynamic systems are being developed, not only in the underwater arena but also in related areas where the work does not fully justify the name. The problem of increasing the capacity of systems management is highly relevant based on the development of new methods for dynamic analysis, pattern recognition, artificial intelligence, and adaptation. Among the large variety of navigation methods that presently exist, the dynamic window approach is worth noting. It was originally presented by Fox et al. and has been implemented in indoor office robots. In this paper, the dynamic window approach is applied to the marine world by developing and extending it to manipulate vehicles in 3D marine environments. This algorithm is provided to enable efficient avoidance of obstacles and attainment of targets. Experiments conducted using the algorithm in MATLAB indicate that it is an effective obstacle avoidance approach for marine vehicles.

Development of Haptic Glove for Remote Control (이동로봇의 원격제어를 위한 햅틱 글러브 개발)

  • Hwang, Yo-Seop;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1030-1035
    • /
    • 2011
  • The remote control of mobile robot is widely used to perform dangerous and complex tasks such as underwater exploration and cleaning of nuclear reactor. For this purpose, the obstacle avoidance process will proceed to ensure a safe drive. In this paper, we tested that mobile robot drive in which replaced a pipe with a box. After we measured the distance around the obstacle through a sensor of robot, we got the information that changed haptic force from the distance of the obstacle.

A Design of Collision Avoidance System of an Underwater Vehicle (수중운동체의 충돌회피시스템에 대한 연구)

  • Nam-Sun Son;Key-Pyo Rhee;Sang-Mu Lee;Dong-Jin Yeo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.23-29
    • /
    • 2001
  • An Obstacle Avoidance System(OAS) of Underwater Vehicle(UV) in diving and steering plane is investigated. The concept of Imaginary Reference Line(IRL), which acts as the seabed in the diving plane, is introduced to apply the diving plane avoidance algorithm to the steering plane algorithm. Furthermore, the distance to the obstacle and the slope information of the obstacle are used for more efficient and safer avoidance. As for the control algorithm, the sliding mode controller is adopted to consider the nonlinearity of the equations of motion and to get the robustness of the designed system. To verify the obstacle avoidance ability of the designed system, numerical simulations are carried out on the cases of some presumed three-dimensional obstacles. The effects of the sonar and the clearance factor used in avoidance algorithm are also investigated. Through these, it is found that the designed avoidance system can successfully cope with various obstacles and the detection range of sonar is proven to bea significant parameter to the performance of the avoidance.

  • PDF

Obstacle Avoidance for AUV using CAPM (CAPM을 이용한 AUV의 장애물 회피)

  • 양승윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.17-29
    • /
    • 2001
  • In this paper, we designed the hybrid path generation method which is named CAPM(Continuous path generation method based on artificial Potential field) that is able to be used in the obstacles environment. This CAPM was designed so that it puts together two obstacle avoidance algorithm-the continuous path generation method(CPGM) and the artificial potential field method(APFM). Here, the CAPM generate the safety path using continuous path curvature. But, this method has demerits when used in obstacles environment in which are closely located. Another method which is named the APFM generates the path with the artificial potential field in the obstacles environment. But, It has local minima in certain places and unnecessarily calculates the path in which obstacles are not located. So, the CAPM was designed for autonomous underwater vehicle(AUV) obstacle avoidance. As the result of simulation, it was confirmed that the CAPM can be applied to a safe path generation for AUV.

  • PDF

Study on Local Path Control Method based on Beam Modeling of Obstacle Avoidance Sonar (장애물회피소나 빔 모델링 기반의 국부경로제어 기법 연구)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.218-224
    • /
    • 2012
  • Recently, as the needs of developing the micro autonomous underwater vehicle (AUV) are increasing, the acquisition of the elementary technology is urgent. While they mostly utilizes information of the forward looking sonar (FLS) in conventional studies of the local path control as an elementary technology, it is desirable to use the obstacle avoidance sonar (OAS) because the size of the FLS is not suitable for the micro AUV. In brief, the local path control system based on the OAS for the micro AUV operates with the following problems: the OAS offers low bearing resolution and local range information, it requires the system that has reduced power consumption to extend the mission execution time, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent local path control algorithm based on the beam modeling of OAS with the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance and analyze the characteristic of the proposed algorithm, the course control of the underwater flight vehicle (UFV) is performed in the horizontal plane. Simulation results show that the feasibility of real application and the necessity of additional work in the proposed algorithm.

A Study on the Autonomic Movement of AUV Using Genetic Algorithm (GA를 이용한 AUV의 자율 운동에 관한 연구)

  • Cho, Min-Cheol;Park, Je-Woong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.22-26
    • /
    • 2003
  • This paper presents a genetic algorithm based autonomic movement algorithm for an autonomous underwater vehicle(AUV) and verified it to simulation. Also, developed program that can do simulation on two dimension and three dimension in seabed environment. The presented algorithm is applicable to a escape from the recursive search and a development of obstacle avoidance system.

  • PDF