• Title/Summary/Keyword: Underwater Body

Search Result 154, Processing Time 0.026 seconds

Development of Cable for Towed Array Sonar System (예인 음탐기용 케이블 개발)

  • Yang, Seung-Yun;Kim, Jung-Suk;Kim, Chul-Min;Lee, Jin-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.559-566
    • /
    • 2016
  • Cables for Towed Array Sonar System(TASS) were developed. In order to verify the performance of cables, environmental and operational conditions as well as functional requirements were investigated during design stage. Double armored high and low voltage integrated cable for towed body and two kinds of cables, armored and light weight power and optic hybrid cables for towed array sensor system were developed by modeling and simulation. Customized manufacturing process and test method, such as foam extrusion and dynamic fatigue test were applied to this development. In conclusion, underwater towed hybrid cable with high tensile strength and compact structure were developed.

Buoyancy Engine Independent Test Module Test in the Ocean Engineering Basin (부력엔진 독립시험 모듈 해양공학수조 시험)

  • Chong-Moo Lee;Hyung-Woo Kim;Tae-Hwan Joung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1155-1162
    • /
    • 2023
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO), which is developing the core technology for the buoyancy engine of underwater gliders, has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module was tested in a 15 metre deep pit in the Ocean Engineering Basin to verify its ability to ascend and descend. In order to test at a shallower depth than the real sea, it was necessary to know the negative buoyancy value during descent and the time at which the buoyancy engine would be activated. To do this, we solved the equation of motion in the vertical direction to obtain these values and applied them to the tank test. To validate the usefulness of solving the equation, we also compared the depth of descent over time measured in the test with the results calculated from the solution.

Buoyancy Engine Independent Test Module Test in the the Deep Ocean Engineering Basin and at Sea (부력엔진 독립시험 모듈 심해공학수조 시험과 실해역 시험)

  • Chong-Moo Lee;Hyungwoo Kim;Heung Hyun Lim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.629-634
    • /
    • 2024
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO) has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module has been tested in the Ocean Engineering Basin(C.M.Lee et al., 2023). After that, more tests were performed in the Deep Ocean Engineering Basin and at sea. In the 50-meter depth pit test of the Deep Ocean Engineering Basin, there were no problems with the ascent and descent operations, but the buoyancy engine was not properly maintained due to various problems in the independent test module, resulting in a difference between the calculated results using the solution of the equations of motion and the actual measurement results. The East Sea test was conducted at a depth of approximately 110 meters north-east of Pohang, with a dive to 100 meters. The difference between the pressure sensor value and the calculated value was observed, but after checking the results of the underwater position tracking device(USBL, Ultra Short Base Line system), it was estimated that the difference was caused by the influence of the current.

A Study about Reduction Rate of Wetsuit Patterns for Men in their 30's (국내 30대 남성용 웨트수트 패턴 축소율에 관한 연구)

  • Choi, Jin-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.9
    • /
    • pp.1039-1048
    • /
    • 2011
  • This research develops a basic design structure for scuba diving wetsuits suitable for the shape of Korean men in their 30's as well as enhances the reduction rate for underwater activity. The clothing pressure and fitness tests were performed using four different types of body suits. The usable data of the tests were coded for further statistical analysis that includes one way-ANOVA test and S-N-K Multiple Range Test by using SPSSWIN 17.0. An analysis of the results shows: (1) The results of the clothing pressure test (using a dummy) indicated that the larger the reduction rate, the stronger the clothing pressure gets (with an exception on the knee area). It has great impact on clothing pressure with regards to the different body parts. The different reduction rates should be applied to body parts accordingly. (2) In the case of test subjects, the overall mean values of the clothing pressure were lower than the ones with the dummy (attributable to the cushion function of body skin and muscle as well as the high stretch of the fabric). (3) In evaluating the subjective fit test of four types of body suits, a statistically significant difference was found in the relation between pattern reduction rates and all parts of the body. It was revealed that the reduction rate of 'B' pattern (X: 4%, Y: 3%) was the most suitable pattern and the 'B' pattern scored highest in the motion functional fit test performed by a test subject.

Two-Dimensional Particle Simulation for Behaviors of Floating Body near Quaywall during Tsunami (지진해일 중 해안안벽 주변의 부유체 거동에 관한 2차원 입자법 시뮬레이션)

  • Park, Ji-In;Park, Jong-Chun;Hwang, Sung-Chul;Heo, Jae-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.12-19
    • /
    • 2014
  • Tsunamis are ocean waves generated by movements of the Earth's crust. Several geophysical events can lead to this kind of catastrophe: earthquakes, landslides, volcanic eruptions, and other mechanisms such as underwater explosions. Most of the damage associated with tsunamis are related to their run-up onto the shoreline. Therefore, effectively predicting the run-up process is an important aspect of any seismic sea wave mitigation effort. In this paper, a numerical simulation of the behaviors of a floating body near a quaywall during a tsunami is conducted by using a particle method. First, a solitary wave traveling over shallow water with a slope is numerically simulated, and the results are compared with experiments and other numerical results. Then, the behaviors of floating bodies with different drafts are investigated numerically.

Dynamic Analysis of Floating Bodies Considering Multi-body Interaction Effect (다물체 연성효과를 고려한 부유체의 동적거동 안전성 해석)

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.659-666
    • /
    • 2009
  • Recently, there are several problems in space, contiguity and facility of the existing harbors issued due to the trend of enlarging the container capacity of the large container vessel, the Mobile Harbor has been proposed conceptually as an effective solution for those problems. This concept is a kind of transfer loader of the containers from the large container ship, which is a floating barge with a catamaran type in the underwater part, and so prompt maneuverability and work effectiveness. For the safe mooring of two floating bodies, a container and the mobile harbor, in the near sea apart from the quay, a robot arm mooring facility specially devised would be designed and verified through comparison study under various environmental sea condition in the inner and outer harbor. DP system (Dynamic Positioning System) using the azimuth thruster and a pneumatic fender, etc, will be considered as a next research topic for the mooring security of multi-body floaters.

Study on the Control and Topographical Recognition of an Underwater Rubble Leveling Robot for Port Construction (항만공사용 사석 고르기 수중로봇의 제어 및 지형인식에 관한 연구)

  • Kim, Tae-Sung;Kim, Chi-Hyo;Lee, Jin-Hyung;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2018
  • When underwater rubble leveling work is carried out by a robot, real-time information on the topography around the robot is required for remote control. If the topographical information with respect to the current position of the robot is displayed as a 3D graphic image, it allows the operator to plan the working schedules and to avoid accidents like rollovers. Up until now, the topographical recognition was conducted by multi-beam sonars, which were only used to assess the quality before and after the work and could not be used to provide real-time information for remote control. This research measures the force delivered to the bucket which presses the mound to determine whether contact is made or not, and the contact position is calculated by reading the cylinder length. A variable bang-bang control algorithm is applied to control the heavy robot arms for the positioning of the bucket. The proposed method allows operators to easily recognize the terrain and intuitively plan the working schedules by showing relatively 3-D gratifications with respect to the robot body. In addition, the operating patterns of a skilled operator are programmed for raking, pushing, moving, and measuring so that they are automatically applied to the underwater rubble leveling work of the robot.

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.;Saiju, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-33
    • /
    • 2010
  • Design of a Pump Jet Propulsor (PJP) was undertaken for an underwater body with axisymmetric configuration using axial/low compressor design techniques supported by Computational Fluid Dynamics (CFD) analysis for performance prediction. Experimental evaluation of the PJP was earned out through experiments in a Wind Tunnel Facility (WTF) using momentum defect principle for propulsive performance prior to proceeding with extensive experimental evaluation in towing tank and cavitation tunnel. Experiments were particularly conducted with respect to Self Propulsion Point (SPP), residual torque and thrust characteristics over a range of vehicle advance ratio in order to ascertain whether sufficient thrust is developed at the design condition with least possible imbalance torque left out due to residual swirl in the slip stream. Pumpjet and body models were developed for the propulsion tests using Aluminum alloy forged material. Tests were conducted from 0 m/s to 30 m/s at four rotational speeds of the PJP. SPP was determined confirming the thrust development capability of PJP. Estimation of residual torque was carried out at SPP corresponding to speeds of 15, 20 and 25 m/s to examine the effectiveness of the stator. Estimation of thrust and residual torque was also carried out at wind speeds 0 and 6 m/s for PJP RPMs corresponding to self propulsion tests to study the propulsion characteristics during the launch of the vehicle m water where advance ratios are close to Zero. These results are essential to assess the thrust performance at very low advance ratios to accelerate the body and to control the body during initial stages. This technique has turned out to be very useful and economical method for quick assessment of overall performance of the propulsor and generation of exhaustive fluid dynamic data to validate CFD techniques employed.

Development of Autonomous Bio-Mimetic Ornamental Aquarium Fish Robotic (생체 모방형의 아쿠아리움 관상어 로봇 개발)

  • Shin, Kyoo Jae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.5
    • /
    • pp.219-224
    • /
    • 2015
  • In this paper, the designed fish robots DOMI ver1.0 is researched and development for aquarium underwater robot. The presented fish robot consists of the head, 1'st stage body, 2nd stage body and tail, which is connected two point driving joints. The model of the robot fish is analysis to maximize the momentum of the robot fish and the body of the robot is designed through the analysis of the biological fish swimming. Also, Lighthill was applied to the kinematics analysis of robot fish swimming algorithms, we are applied to the approximate method of the streamer model that utilizes techniques mimic the biological fish. The swimming robot has two operating mode such as manual and autonomous operation modes. In manual mode the fish robot is operated to using the RF transceiver, and in autonomous mode the robot is controlled by microprocessor board that is consist PSD sensor for the object recognition and avoidance. In order to the submerged and emerged, the robot has the bladder device in a head portion. The robot gravity center weight is transferred to a one-axis sliding and it is possible to the submerged and emerged of DOMI robot by the breath unit. It was verified by the performance test of this design robot DOMI ver1.0. It was confirmed that excellent performance, such as driving force, durability and water resistance through the underwater field test.