• Title/Summary/Keyword: Underground water

Search Result 1,340, Processing Time 0.039 seconds

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

Effect of Long Term Waterlogging on the Growth and Nutrient Contents of 'Campbell Early' and 'Kyoho' Grapevine Cultivars (장기 침수가 포도 '캠벨얼리'와 '거봉' 품종의 생육과 양분함량에 미치는 영향)

  • Kang, Seok-Beom;Lee, In-Bog;Jang, Han-Ik;Park, Jin-Myeon;Moon, Doo-Khil
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.178-184
    • /
    • 2008
  • This work was carried out to investigate the effect of waterlogging on the growth and nutrient contents of 'Campbell Early' and 'Kyoho' grapevines under the vinyl house condition from June 14 to July 20, 2005. For the trial, seedlings of two-year-old grapevine were transplanted to 40 L pot with a sandy loam soil. Irrigation point of non-waterlogging(control) treatment was controlled at -40 kPa of soil water tension using tensiometer and waterlogging treatments were imposed for 35 days at the water levels of above 10 cm from the soil surface using tap water. The growth of aerial(shoot length, leaf number and stem diameter) and underground(root) parts of 'Campbell Early' and 'Kyoho' grapevines tended to be wholly reduced by waterlogging, while the growth of aerial parts were more severely impaired in 'Kyoho' than in 'Campbell Early' cultivar. The different responses for waterlogging between two grapevines seem to be related with the capacity for absorbing mineral nutrients, because nitrogen content of 'Campbell Early' cultivar leaves was significantly higher than that of 'Kyoho' cultivar although the contents of phosphorus and potassium in leaves of two grapevine cultivars were similarly declined. There was no significant different of fruit quality, such as contents of soluble solid, titratable acidity and weight of berry in 'Campbell Early' between waterlogging and control. In 'Kyoho' cultivar, however, berry weight and titratable acidity were decreased and soluble solid content was increased by waterlogging. It was assumed that waterlogging stress for grapevines promotes maturation and coloring processes of berries by stimulating maturation hormone such as ethylene. In conclusion, 'Campbell Early' cultivar seems to be more tolerable than 'Kyoho' cultivar when comparing the growth responses and nutrient contents between two grapevine cultivars under waterlogging.

Division of Soil Properties in Reclaimed Land of the Mangyeong and Dongjin River Basin and Their Agricultural Engineering Management (만경강과 동진강 유역 간척농경지 토양특성 구분과 농공학적 관리 대책)

  • Hwang, Seon-Woong;Kang, Jong-Gook;Lee, Kyung-Do;Lee, Kyung-Bo;Park, Ki-Hun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.444-450
    • /
    • 2012
  • The physical and chemical properties of soil in the Mangyeong and Dongjin river basin had been investigated in order to establish the most optimum soil improvement plan on the reclaimed land. The total soil area by reclamation in Saemangeum basin is 113,971 ha. The classification by the distribution of soil series and soil texture is as following. 13 soil series including Chonnam, Buyong and Chonbuk series are period-unknown areas. Regarding the soil texture, they are fine silty ~ clayey very fine. From 1920s to 1960s, Mangyeong, Gwanghwal and Chonbuk series had coarse silty textured soil. After the 1970s, Mangyeong, Gwanghwal, Munpo, Yeompo, Poseung, Gapo and Hasa series have more sandy soil ~ moderately coarse loamy textured soil. Regarding the chemical properties, the concentrations of EC, Exch. $K^+$, $Mg^{2+}$, $Na^+$ and pH are high regardless of the time of reclamation. On the other hand, organic matter (OM) of top soil were 3.3~16.1 g $kg^{-1}$. The organic matter contents were very low though the soil had been farmed for a long time. Furthermore, the deep soil had almost no organic matter with 5.6~1.1 g $kg^{-1}$. The reason is believed that there had not been any movement of OM and clay because pressure or induced pans had been formed by large agricultural machineries and poor vertical drain. Regarding the forming of illuvial horizon (B layer) which tells the development extent of soil, only in the Hwapo reclaimed area where rice had been cultivated for past 90 years, Fe and Mn from top soil are deposited at underground 20~30 cm with 7~8 cm thickness by the movement of clay. It is believed that it had been possible because the earthiness is silty clay loam soil with relatively high content of clay. The soils are soil with concern of damage from sea water, soil on flimsy ground and sandy soil. Therefore, soil improvement for stable crop production can be expected; if the water table would be lowered by subsurface drainage, the water permeability would be enhanced by gypsum and organic matter, and the sandy soil would be replaced by red soil with high content of clay.

A Feasibility Study on GMC (Geo-Multicell-Composite) of the Leachate Collection System in Landfill (폐기물 매립시설의 배수층 및 보호층으로서의 Geo-Multicell-Composite(GMC)의 적합성에 관한 연구)

  • Jung, Sung-Hoon;Oh, Seungjin;Oh, Minah;Kim, Joonha;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.67-76
    • /
    • 2013
  • Landfill require special care due to the dangers of nearby surface water and underground water pollution caused by leakage of leachate. The leachate does not leak due to the installation of the geomembrane but sharp wastes or landfill equipment can damage the geomembrane and therefore a means of protecting the geomembrane is required. In Korea, in accordance with the waste control act being modified in 1999, protecting the geosynthetics liner on top of the slope of landfill and installing a drainage layer to fluently drain leachate became mandatory, and technologies are being researched to both protect the geomembrane and quickly drain leachate simultaneously. Therefore, this research has its purpose in studying the drainage functions of leachate and protection functions of the geomembrane in order to examine the application possibilities of Geo-Multicell-Composite (GMC) as a Leachate Collection Removal and Protection System (LCRPs) at the slope on top of the geomembrane of landfill by observing methods of inserting filler with high-quality water permeability at the drainage net. GMC's horizontal permeability coefficient is $8.0{\times}10^{-4}m^2/s$ to legal standards satisfeid. Also crash gravel used as filler respected by vertical permeability is 5.0 cm/s, embroidering puncture strength 140.2 kgf. A result of storm drain using artificial rain in GMC model facility, maxinum flow rate of 1,120 L/hr even spray without surface runoff was about 92~97% penetration. Further study, instead of crash gravel used as a filler, such as using recycled aggregate utilization increases and the resulting construction cost is expected to savings.

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

Numerical analysis of FEBEX at Grimsel Test Site in Switzerland (스위스 Grimsel Test Site에서 수행된 FEBEX 현장시험에 대한 수치해석적 연구)

  • Lee, Changsoo;Lee, Jaewon;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.359-381
    • /
    • 2020
  • Within the framework of DECOVALEX-2019 Task D, full-scale engineered barriers experiment (FEBEX) at Grimsel Test Site was numerically simulated to investigate an applicability of implemented Barcelona basic model (BBM) into TOUGH2-MP/FLAC3D simulator, which was developed for the prediction of the coupled thermo-hydro-mechanical behavior of bentonite buffer. And the calculated heater power, temperature, relative humidity, total stress, saturation, water content and dry density were compared with in situ data monitored in the various sections. In general, the calculated heater power and temperature provided a fairly good agreement with experimental observations, however, the difference between power of heater #1 and that of heater #2 could not captured in the numerical analysis. It is necessary to consider lamprophyre with low thermal conductivity around heater #1 and non-simplified installation progresses of bentonite blocks in the tunnel for better modeling results. The evolutions and distributions of relative humidity were well reproduced, but hydraulic model needs to be modified because the re-saturation process was relatively fast near the heaters. In case of stress evolutions due to the thermal and hydraulic expansions, the computed stress was in good agreement with the data. But, the stress is slightly higher than the measured in situ data at the early stage of the operation, because gap between rock mass and bentonite blocks have not been considered in the numerical simulations. The calculated distribution of saturation, water content, and dry density along the radial distance showed good agreement with the observations after the first and final dismantling. The calculated dry density near the center of the FEBEX tunnel and heaters were overestimated compared with the observations. As a result, the saturation and water content were underestimated with the measurements. Therefore, numerical model of permeability is needed to modify for the production of better numerical results. It will be possible to produce the better analysis results and more realistically predict the coupled THM behavior in the bentonite blocks by performing the additional studies and modifying the numerical model based on the results of this study.

A Reinvestigation on Key Issues Associated with the Yimjin(1712) Boundary Making and Demarcation: Location of 'Yipjiamlyu' and the Confluence of 'Tomungangweon' into the Sungari River (임진정계시 '입지암류(入地暗流)'의 위치와 '토문강원(土門江源)'의 송화강 유입 여부)

  • Lee, Kang-Won
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.6
    • /
    • pp.571-605
    • /
    • 2015
  • This research revealed that 'Yipjiamlyu' in the Mukedeng's map is geographically 'a beginning point of underf low,' whose location is on the Heishigou's riverbed(E.L. 1,840m) in the NNE side of Daegakbong peak, and that 'Tomungangweon'(Heishigou) is one of the upstream reach of the Sungari River, which, according to historical documents and my fieldwork, Mukedeng also knew at the time of Yimjin(1712) Boundary Making and Demarcation(YBMD). These findings suggest the need to reinterpret the processes of YBMD. Mukedeng set up the Baekdusanjeonggyeobi on the mistaken assumptions on the linkage of 'Yipjiamlyu' and Tumen River. It should have been set up on the Daeyeonjibong peak. Mukedeng found the 'Yipjiamlyu' on the riverbed of 'Tomungangweon'(Heishigou), went downstream, and realized that this river did not flow into the Tumen River. During the search for the source of Tumen River, he found a water stream, and regarded it as the source of Tumen River. He speculated that the water at the 'Yipjiamlyu' flows through the underground to reappear at the his 'identified' source of Tumen River. Consequently, he adjured the construction of demarcation from Baekdusanjeonggyeobi through 'Yipjiamlyu' to the his 'identified' source of Tumen River. The water stream pointed as the source of Tumen River, however, was not part of the upstream reach of Tumen River. Actually, Korean officials, who were in charge of establishing boundary features, set up the demarcation from Baekdusanjeonggyeobi through Huanghuasongdianzi to the true source of Tumen River identified by themselves, which Mukedeng had not intended. The ambiguity of the location of 'Yipjiamlyu' caused a difference between Mukedeng's original request and Korean officials' implementation in the boundary demarcation. Throughout the whole processes of YBMD, Korea(Joseon) and China(Qing) both mistook the real geography of the river system. Their understanding on Yalu River system was correct. But the identification of the spring source of the Tumen River by Korean participants was the only geographically correct result related on this river system in YBMD.

  • PDF

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network (계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-Ok;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.105-115
    • /
    • 2021
  • The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.