• Title/Summary/Keyword: Underground power cable systems

Search Result 82, Processing Time 0.046 seconds

Transient Phenomena Analysis and Estimation According to Unbalance Factors on Underground Power Cable Systems (지중송전계통에서 불평형 구성요소에 따른 과도현상 해석 및 평가)

  • Jung Chae-Kyun;Lee Jong-Beom;Kang Ji-Won;Lee Dong-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.410-417
    • /
    • 2005
  • This paper analyses the transient phenomena against single line to ground fault and lightning surge on underground power cable systems. For analysis in various fault conditions, several actual underground power cable systems are modeled using ATP In ground fault, the transient characteristic of the conductor and the sheath according to the fault current and the installation types of CCPU are analysed. In lightning surge strokes, the various unbalanced conditions including the length of crossbonded lead, the breakdown of CCPU and distance unbalance are considered. This paper is expected to contribute the establishment of proper protection methods against transients on underground power cable systems.

A Review of Strategy to Capture Niche Marketing of HTS Power Distribution Cable

  • Park, Sang-Bong;Nam, Kee-Young;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Ryoo, Hee-Suk
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.1
    • /
    • pp.11-17
    • /
    • 2004
  • It becomes difficult and high in cost to construct new ducts and/or tunnels for power cables in domestic areas. This paper presents possible strategy of an HTS distribution cables for distributing electric power in local areas as niche marketing. Reflected were its important distinction such as system configuration, rationale, establishment of strategy and considerably high economical efficiency compared with present underground cables. In this paper, applicable important items by using HTS distribution cables in water pumping powerhouse and distribution substation as example objective regions were reviewed. Based on this, the following items on distribution HTS system are examined. (I)A review of constructing a model system to introduce high temperature superconducting distribution cables to objective areas is presented. (2)The strategy to capture HTS distribution cable in water pumping powerhouse and distribution substation as niche marketing regions were reviewed. (3)In concrete, system configuration, rationale, establishment of strategy and considerably high economical efficiency are reviewed between existing cable and HTS one.

A Study on the Surge Analysis considering Surge Arrester and Grounding System in the Combined Distribution System (혼합 배전계통에서 피뢰기적용과 접지시스템 변경을 고려한 서지 해석에 관한 연구)

  • Yun, Chang-Sub;Lee, Jong-Beom;Kim, Beong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.204-205
    • /
    • 2006
  • This paper describes the protective ability of lightning arrestor in combined distribution system with power cable. To evaluate the protective ability, change of arrestor and grounding location are considered. On the other hand, arrestor developed by Cooper Power Systems for underground power cable system, is considered to evaluate surge protective ability as in underground system, when arrestor occurs failure has overhead line. The result shows that lightning arrestor in combined distribution system with power cable protect effectively when failure at arrestor in overhead line. On the other hand, arrestor developed by Cooper Power Systems for underground power cable system, is considered to evaluate surge protective ability in underground distribution system, when arrestor of overhead line has failure. The result shows that lightning arrestor installed in underground cable can effectively protected cables from surge when arrestor of overhead line has failure. And also even though grounding locations are decreased, it is revealed that protective ability is nearly similar.

  • PDF

The line impedance calculation and measurement of the underground transmission cable (지중 송전 케이블 선로임피던스 계산 및 실측)

  • Kim, Nam-Yul;Kim, Joung-Yun;Heo, Hoi-Deok;Lee, Su-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.405-407
    • /
    • 2006
  • The power system analysis based on the accurate impedance of the individual underground cable, which is the inter connected to a large power system, is required. A study on calculation method of impedance allowable current for underground cables. furthermore, various methods of bonding and earthing the sheath have been used for the purpose of eliminating or reducing the sheath losses. the effectes of bonding and earthing must be includied in impedances. therefore, the subject of predicting thermal performance of soil and cable systems has been received increasing attension. for these problems, this paper describes a general formulation of impedance that is based on the effect of crossbonding and earthing of the sheath on the 66kV, 132kV and 220kV underground cable systems. also the work is presented, for calculating the temperature rise of power cable and soil.

  • PDF

Fuzzy Inference System Based Distance Relay Algorithm Development for Protecting an Underground Power Cable Systems (퍼지추론시스템 기반 지중송전계통 보호용 거리계전 알고리즘 개발)

  • Jung, Chae-Kyun;Oh, Sung-Kwun;Park, Keon-Jun;Lee, Jae-Kyu;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.172-178
    • /
    • 2008
  • If the fault occurs on the underground power cable systems, the fault current on the sheath has an influence on all sections of cable because it's returned through earth at the directly grounded point and operation point of SVL(Sheath Voltage Limiter) on each insulated joint box. Therefore, the earth resistance and the operation of SVL have an effect on the zero-sequence current, and then the impedance between relaying point and fault point is increased. That causes the overreach of distance relay. For these reasons, the distance relay algorithm for protecting an underground power cable systems hasn't been developed till now. In this paper, new distance relay algorithm is developed for protecting a underground power cable system using fuzzy inference system which is the one of ACI(Advanced Computational Intelligence) techniques. This algorithm is verified by EMTP simulation of real power cable system, and proves to effectively advance the errors

A Study for Application Ventilation System of Underground cable Tunnel (II) (지하 전력구 터널의 환기시스템 적용에 관한 연구 (II))

  • Kim, Kyoung-Yul;Oh, Ki-Dae;Kim, Dae-Hong;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.778-783
    • /
    • 2008
  • In this paper, numerical method was calculated on evaluation of underground ventilation system to keep servicing a fresh air. The tunnel length for simulation is 18.2 km with various located seven ventilation shaft. Generally, owing to thermal generation in cable tunnel under about 50 m depths, cable tunnel ventilation system is more important than that of other tunnels. So, we conducted that the effects of ventilation systems was simulated depending on the difference of electrical power tunnel length, the number of shaft tunnel, forced ventilation and duct was or not. Test results show that the main conditions in order to enhance the underground cable tunnel are that ventilation systems have to be designed with forced ventilation and with duct.

  • PDF

Analysis of Sheath Induction Voltage for 154kV OF Underground Cable (154kV OF 지중케이블의 씨스 유도전압 해석)

  • Lee, H.G.;Kim, D.K.;Bae, J.H.;Ha, T.H.;Choi, S.B.;Jeong, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.156-158
    • /
    • 2000
  • As we are industrialized lately, power capacity is increased in the city urban areas. So the application of underground transmission line is largely expended. In this paper, we analysis the induction voltage on the sheath of 1,200[$mm^2$] OF underground cable being used 154kV underground transmission line. If the current on the cable conductor is 300[A], circulation current is induced the maximum 100[A] on the cable sheath.

  • PDF

Signal Processing Technology for Fault location System in Underground Power Cable (고장점 탐색 장치를 위한 신호처리 연구)

  • Lee, Jae-Duck;Ryoo, Hee-Suk;Jung, Dong-Hak;Choi, Sang-Bong;Nam, Kee-Young;Jeong, Seong-Hwan;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.712-714
    • /
    • 2005
  • With rapid growth of industry, underground power delivery systems are growing so rapidly and its capacity also growing. So if there are any accident in underground power cable, its inference is too great to count. So power system operators should find Its fault location as soon as possible and replace it But it is difficult to find its fault location for underground power cable. We are developing fault location system for underground power cable which can detect its fault location exactly. This system usually monitor underground power cable on-line But if there are an accident, it record Its transient signal and we can calculate fault location by analyzing it. To develop fault location system for power cable, we needed fault simulation system and we installed it physically and tested at various point. in this thesis, we describe on signal processing technology to detect fault location on power cable and on the result of tested fault location performance.

  • PDF

A Study on the Sequence Impedance Modeling of Underground Transmission Systems (지중송전선로의 대칭분 임피던스 모델링에 관한 연구)

  • Hwang, Young-Rok;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Analysis of lightning overvoltage with unbalanced element in Underground Transmission Cable System (지중송전계통에서 불평형요소에 따른 뇌과전압 해석)

  • Kang, J.W.;Lee, D.I.;Kim, J.S.;Kim, Y.S.;Jung, C.K.;Lee, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.718-720
    • /
    • 2005
  • This paper analyses the transient phenomena against lightning surge on underground power cable systems. For analysis, several actual underground power cable systems are modeled using ATP. In lightning surge strokes, the various unbalanced conditions including the length of crossbonded lead, the breakdown of CCPU and distance unbalance are considered. This paper is expected to contribute the establishment of proper protection methods against transients on underground power cable systems.

  • PDF