• Title/Summary/Keyword: Underground Distribution Equipment

Search Result 28, Processing Time 0.027 seconds

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Development of Permanent Reference Electrode for Corrosion Monitoring of Underground Metallic Structures (지중 금속구조물 부식감시를 위한 영구매설용 기준전극 개발)

  • Ha, Y.C.;Bae, J.H.;Ha, T.H.;Lee, H.G.;Lee, J.D.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.532-534
    • /
    • 2004
  • The advancement of electronics and telecommunication technologies has forced the risk management system for underground metallic structures to evolve into the remote monitoring and control system. Especially, facilities such as gas pipelines, oil pipelines and water distribution lines might make hazardous effect on human safety without continuous monitoring and control. As a result, pipeline engineers have applied cathodic protection system to prevent the degradation of their facilities by corrosion and carried out a periodic monitoring of the pipe-to-soil (P/S) potentials at numberous test boxes along their pipelines. The latter action on a road in downtowns, however, is so much dangerous that the inspectors should be ready to suffer the threatening of their lives and maintenance. In order to minimize these social costs and hazards, a stand-alone type corrosion monitoring equipment which can be installed in test box, store the P/S data for given Belied and send the data by wired/wireless telecommunications is under development. In order to obtain the exact P/S data, however, a reference electrode should be located as close to the pipeline as possible. Actually, the measured potential by a conventional portable reference electrode contain inevitably an IR drop portion caused by the current flow from the cathodic protection rectifier or the subway railroad. To minimize this error, it is recommended that the reference electrode should be buried within 10 cm from the pipeline. In this paper, we describe the design parameters for fabricating the permanent type reference electrode and the characteristics of the developed reference electrode.

  • PDF

A study on Protective Coordination of MCA for Performing of the Pad Mounted Transformer's inside Protective Device (지상변압기의 내부 보호장비 작동을 위한 MCA 보호협조에 대한 연구)

  • Hyun, Seung-Yoon;Kim, Chang-Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.5-7
    • /
    • 2022
  • KEPCO's plan is undergoing a trial operation to replace the open-loop section with ring main units configuration where underground distribution lines are installed, by linking the multi-way circuit breakers auto (MCA) on the power side of each pad-mounted transformer. However, ring main units application mentioned above may cause the ripple effects, when implementing the configuration without a study of protection coordination. Because ring main units with classical pre-set protection devices contribution in fault condition didn't consider yet. For the reliable ring main units operation, it is necessary to resolve several protection issues such as the protection coordination with substation side, prevention of the transformer inrush current. These issues can radically deteriorate the distribution system reliability Hence, it is essential to design proper protection coordination to reduce these types of problems. This paper presents a scheme of ring main units' configuration and MCA's settings of time-current curves to preserve the performance of protection coordination among the switchgears considering constraints, e.g. prevention of the ripple effects (on the branch section when a transformer failure occurs and the mainline when a branch line failure occurs). It was confirmed that the propagation of the failure for each interrupter segment could be minimized by applying the proposed TCC and the interrupter settings for the MCAs (branch, transformer). Further, it was verified that the undetected area of the distribution automation system (DAS) could be supplemented by having the MCA configurated ring main units operate first, instead of the internal protection equipment in the transformer such as the fuse, STP when a transformer failure occurs.

A Possible diagnostic method of cable system using SI-PD measurement (충격파-부분방전(SI-PD) 시험방법을 이용한 케이블 진단에 관한 기초 연구)

  • Kim, J.T.;Koo, J.Y.;Jang, E.;Cho, Y.O.;Kim, S.J.;Song, I.K.;Kim, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1774-1777
    • /
    • 1996
  • In this paper, applicability of SI-PD(switching impulse - partial discharge) testing method was put on an attempt as a newly proposed diagnostic method for the underground distribution power cable system in Korea. For this purpose, SI-PD testing equipment was designed, and tests were performed using artificial needle-type defects integrated into the 22.9 kV CN/CV cables in drder to prove its reliability. As a result, arc noises, generated from spark gap, were considerably decreased by use of a pneumatic switch immersed into oil, and artificial needle-type defects were well detected with impulse voltage level under $2U_0$. These results imply that it is likely possible to apply SI-PD measurement method as a the nondistructive test for the 22.9 kV CN/CV cable system in Korea.

  • PDF

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드변압기의 덕트에 따른 열해석 특성 연구)

  • Cho, Han-Goo;Lee, Un-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1138
    • /
    • 2003
  • The transformer is major equipment in power receiving and substation facilities. Necessary conditions required for the transformer are compactness, lightness, high reliability, economic advantages, and easy maintenance. The pole-mount transformer installed in distribution system is acting direct role in supply of electric power and it is electric power device should drive for long term. Most of modem transformer are oil-filled transformer and accident is happening considerable. The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. One body molding transformer needs some cooling method because heat radiation between each winding is difficult. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

  • PDF

Factors Influencing Cost Overruns in Construction Projects of International Contractors in Vietnam

  • VU, Thong Quoc;PHAM, Cuong Phu;NGUYEN, Thu Anh;NGUYEN, Phong Thanh;PHAN, Phuong Thanh;NGUYEN, Quyen Le Hoang Thuy To
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.389-400
    • /
    • 2020
  • A construction project is a designed product made up of labors, materials, and installations in the project positioned on the ground and may include the underground and ground section, and the section in water or on the water surface. It is a civil, industrial, transport, agricultural and rural development, infrastructure, or some other. A key phase in the life cycle of these construction projects is the implementation when building products are made directly with workers, equipment, materials, and managers. If there is a lack of management experience, information, and problem-solving solutions to tackle the risks faced by contractors, especially foreign ones, will fail in controlling the project's cost. This study was conducted with investigations, discussions, and evaluation of the factors that lead to cost overruns in the construction projects of international contractors in Vietnam. The principal component analysis (PCA) showed that those factors that influence cost overruns these construction projects fall into five general groups, including factors related to (i) the owners, (ii) the foreign contractors, (iii) the subcontractors and suppliers, (iv) state management, and (v) the project itself. Besides, the study proposes solutions to limit cost overruns in construction projects and improve the profitability of international contractors in Vietnam.

Experimental Study on the Performance Characteristics of Geothermal DTH Hammer with Foot Valve (풋 밸브가 적용된 지열 천공 DTH 해머의 성능 특성에 대한 실험적 연구)

  • Cho, Min Jae;Sim, Jung-Bo;Kim, Young Won
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.1
    • /
    • pp.14-22
    • /
    • 2021
  • Drilling equipment is an essential part used in various fields such as construction, mining, etc., and it has drawn increasing attention in recent years. The drilling method is generally divided into three types. There are a top hammer method that strikes on the ground, a DTH (Down-The-Hole) method that directly strikes a bit in an underground area, and a rotary method that drills by using rotational force. Among them, the DTH method is most commonly used because it enables efficient drilling compared to other drilling methods. In the conventional DTH hammer, the valve between the piston and the bit is opened and closed using a face to face method. In order to improve the power of the DTH hammer, a DTH hammer with foot valve which is capable of instantaneous opening and closing is used in the drilling field. In this study, we designed a lab-scale DTH hammer with the foot valve, and manufactured an evaluation device for the experiment of the DTH hammer. In addition, we analyzed the performance of the DTH hammer adopted with foot valve according to the pressure range of 3-10 bar. As a result, the internal pressure distribution in the DTH hammer was experimentally analyzed, and then, the movement of the piston according to the pressure was predicted. We believe that this study provides the useful results to explain the performance characteristics of the DTH hammer with the foot valve.

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.