• 제목/요약/키워드: Underground Cable

검색결과 470건 처리시간 0.022초

지중케이블 선로 임피던스 실측 및 분석 (Measurement and Analysis of Line Impedance in Underground Cables)

  • 하체웅;김정년
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.205-207
    • /
    • 2003
  • The line impedance is important data that is applied in all analysis fields of electric power system like power flow, fault current, stability and relay calculation etc. Usually, impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, impedance can not be accurately calculated because cable systems have the sheath, grounding wires, and earth resistance. Therefore, if there is a fault in cable system, these terms will severely be caused much error to calculation of impedance. Therefore, the line impedance were measured for this study in an actual power system of underground cables, and were analyzed by a generalized circuit analysis program EMTP for comparison with the measured value. These analysis result is considered to become foundation of impedance calculation for underground cable.

  • PDF

혼합송전선로 편단접지 구간 과전압 저감 방안에 관한 연구 (A Study on Overvoltage Reduction Method of Single Point Bonded Section on Combined Transmission Lines)

  • 정채균;강지원;박흥석;김진
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1881-1887
    • /
    • 2009
  • This paper discusses the effects of ECC (Earth Continuity Conductor) for reducing the level of induced sheath overvoltages at the single point bonded section of combined transmission lines which are mixed underground power cable with overhead line in one T/L. In previous papers, the characteristics of ECC on only underground power cable systems were sufficiently analyzed. However, the result of only underground power cable systems are totally different from that of combined transmission lines because ECC is commonly grounded with overhead grounding wire at mesh of cable head. Therefore, in this paper, the installation effects of ECC have been variously analyzed considering the three kinds of fault positions, cable formation of duct and trefoil, spacing between phase conductor and ECC, and the change of overhead transmission line section length on 154kV combined transmission line. Finally, simulation results show that ECC can effectively reduce the induced sheath voltage.

Sheath Circulating Current Analysis of a Crossbonded Power Cable Systems

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.320-328
    • /
    • 2007
  • The sheath in underground power cables serves as a layer to prevent moisture ingress into the insulation layer and provide a path for earth return current. Nowadays, owing to the maturity of manufacturing technologies, there are normally no problems for the quality of the sheath itself. However, after the cable is laid in the cable tunnel and is operating as part of the transmission network, due to network construction and some unexpected factors, some problems may be caused to the sheath. One of them is the high sheath circulating current. In a power cable system, the uniform configuration of the cables between sections is sometimes difficult to achieve because of the geometrical limitation. This will cause the increase of sheath circulating current, which results in the increase of sheath loss and the decrease of permissible current. This paper will study the various characteristics and effects of sheath circulating current, and then will prove why the sheath current rises on the underground power cable system. A newly designed device known as the Power Cable Current Analyser, as well as ATP simulation and calculation equation are used for this analysis.

초고압 지중선로 감시시스템 연구 (Surveillance System For Underground Power Transmission Lines)

  • 한기만;이광철;김충식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.618-620
    • /
    • 1993
  • This system using optical fiber provides various information about underground tunnel and power transmission lines-atmospheric temperature, humidity, oil pressure, flammable gas, cable behavior, and so on. To transmit various data and to keep reliability, optical MUXs are adopted. User can easily operate monitoring software by using GUI.

  • PDF

지중배전계통 보호를 위한 모의시험선로 서지특성 해석 (A Lightning Surge Analysis of Testing Line for Protection of Underground Distribution Systems)

  • 김병숙;이장근;이종범;한병성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권8호
    • /
    • pp.313-321
    • /
    • 2006
  • This paper describes the overvoltage obtained by surge behavior analysis in testing underground distribution systems. Model systems consist of overhead distribution line and underground cable. Such model system considered various characteristics of actual distribution systems will be soon constructed at testing yard. Simulation is carried out under various states such as cable kinds, cable length, lightning wave and time, and branch circuits. Model is established by EMTP/ATPDraw. Line Constants are calculated by ATP_LCC. When the direct lightning surge strikes on conductor of overhead line, the overvoltage is calculated using EMTP/ATPDraw in many cases. Simulation results will be compared with real testing results at testing yard in the near future. The compared results will be used to establish protection methods in actual underground distribution systems.

지중송전케이블룡 디지털 거리계전 알고리즘 개선 (An Improvement of Digital Distance Relaying Algorithm on Underground Transmission Cables)

  • 하체웅;이종범
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권12호
    • /
    • pp.595-601
    • /
    • 2000
  • This paper describes the improvement method of distance relaying algorithm for the underground transmission cables. Distance relaying algorithms have been mainly developing to protect the overhead transmission lines than the underground cables. If the cable systems are directly protected using distance relaying algorithm developed for overhead line without any improvement, there will be really occurred many misoperation in cable systems, because the cable systems consist of the conductor, the sheath, several grounding method, cable cover protection units(CCPUs), and grounding wire. Accordingly, the complicated phenomena are occurred, if there is a fault in cable systems. Therefore, to develope a correct distance relaying algorithm, such cable characteristics should be taken into account. This paper presents the process to improve distance relaying algorithm which is now used. REal cable system was selected to establish modeling in EMTP and ATP Draw. It was discovered through the detailed simulation during the fault that the large error existed between impedance measured at the relay point and real impedance is due to the resistance of grounding wire in each grounding method. And also compensation factor obtained by the simulation is proposed in this paper. It is proved that the factor proposed can fairly improve the accuracy of impedance at the relay point. It is evaluated that the protective ability will be really much improved, if the algorithm proposed in this paper is applied for cable systems of utility.

  • PDF

EMTP 기반 지중송전케이블 시뮬레이터 개발 및 적용 (Development and Applicatin of EMTP Based Power Cable Simulator for Underground Transmission Cables)

  • 정채균;박흥석;강지원;이종범;한상옥
    • 전기학회논문지
    • /
    • 제59권8호
    • /
    • pp.1374-1381
    • /
    • 2010
  • This paper discusses the characteristics of sheath circulating current as well as the development and application of new software for underground power cable systems. Generally, in steady state, high sheath circulating current causes the increase of sheath temperature and thermal resistance which leads to the steeply reduction of the power capacity. Therefore, the exact calculation of sheath circulating current is required for analysis about the influence of high sheath current on permissible current. In this paper, Power Cable Simulator is developed for calculation of the sheath current. It can analyse the sheath current by real time. It is also easier to use than conventional software, such as EMTP and CabSim, because all the data for calculating the cable parameters are stored in a database(DB) within Power Cable Simulator. In addition, the accuracy of Power Cable Simulator is also proved through the comparison among the current calculated by Power Cable Simulator, EMTP and Cabsim with measured current.

지중케이블 접속부의 절연층 두께변화에 따른 열해석 연구 (A Study on the Heat Transfer Analysis based on Insulation Thickness Variation of Cable Splice Part)

  • 최규식
    • 전력전자학회논문지
    • /
    • 제3권3호
    • /
    • pp.246-255
    • /
    • 1998
  • 지중케이블을 따라서 강제냉각관을 설치하여 케이블을 냉각시키는 방법은 특히 일본을 비롯하여 세계 선진국에서 일반적으로 사용하고 있는 방법이다. 그러므로 케이블의 강제냉각에 대한 연구는 국내외적으로 많이 이루어져 그 결과도 매우 성공적이다. 그러나, 케이블 접속부에 대한 연구는 그 중용성에도 불구하고 미미한 상황이다. 그러므로, 본 연구에서는 기존의 154kV 지중 케이블의 접속재를 전력구의 맨홀에 설치하여 냉동기를 이용한 냉각방식에 의해 맨홀의 온도를 $10^{\circ}C$로 유지한다고 했을 때, 열해석을 통해 절연층의 두께변화에 따랄 절연유의 열유동 및 등온선분포가 어떻게 형성 되는가를 연구한다. 연구결과에 의해서 국내에서 도입하려는 지중케이블 접속부의 냉각방식에 대해 검토하고자 하였다.

  • PDF

EMTP를 이용한 지중송전케이블의 부분방전 신호 전파특성 분석 (Effects Analysis of Partial Discharge Signal Propagation Characteristics in Underground Transmission Cables Using EMTP)

  • 정채균;장태인
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.629-635
    • /
    • 2014
  • This paper describes propagation characteristics obtained by considering semiconducting screen and cross-bonding in underground transmission cables. The semiconducting screen of power cable has effect on propagation characteristics including attenuation, velocity and surge impedance. However, it is very difficult to apply the semiconduction screen for EMTP model because of the number of conductors limitation. Therefore, CIGRE WG 21-05 proposed advanced insulation structure and analysis technique of simplified approach including inner and outer semiconducting screen. In this paper, the various propagation characteristics analyse using this structure and technique for 154kV XLPE $2000mm^2$ cable. The frequency independent model of EMTP CABLE PARAMETER is used for just pattern analysis of propagation characteristics. For exact data analysis, the frequency dependent model of J-marti is used for EMTP modeling. From these result, various propagation characteristics of 154kV XLPE $2000mm^2$ cable according to semi conducting screen consideration, frequency range, cable length and pulse width are analysed. In addition, in this paper, the effects of cross-bonding are also variously discussed according to cross-bonding methods, direct connection and impedance of lead cable.

154kV XLPE 600㎟ 지중관로 수평배열 형태별 허용전류용량 산정에 관한 연구 (A Study on the Calculation of Transmission Current-Carrying Capacity by Horizontal Arrangement Type in the Installation Methods of 154kV XLPE 600㎟ Power Cable Buried Ducts in Ground)

  • 김세동;유상봉
    • 조명전기설비학회논문지
    • /
    • 제30권3호
    • /
    • pp.53-58
    • /
    • 2016
  • The underground transmission lines which have been built to expand the suppling facilities will be continuously accompanying with high growth of the increase of power demand in the metropolitan area in recent years. So, it is necessary to maximize the ability and reliability of power supply with the current-carrying capability of the underground transmission lines. Design criteria of KEPCO is to be presented and used frequently. But it has to be studied about the installation methods of power cable buried in ground. In this study, we used the program for calculating the current-carrying capability of underground transmission power cables. We estimated the maximum permissible current values by the horizontal arrangement in the installation methods of power cable(154kV XLPE $600mm^2$) buried ducts in ground. To see the general tendency of the analysis, we researched a statistical analysis with such parameters as the maximum permissible current values. Through the regression analysis, we analyze the most highly values of the maximum permissible current on the Ra type duct arrangement.