• Title/Summary/Keyword: Under-lap

Search Result 158, Processing Time 0.02 seconds

Analytical Study on Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Columns with Lap Splices (주철근 겹침이음을 갖는 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구)

  • 김태훈;김운학;신현목;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.931-936
    • /
    • 2003
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. Lap splicing is also permitted if hoops or spiral reinforcement are provided over the lap length in the current seismic design provision. But sudden brittle failure of lap splices may occur under inelastic cyclic loading. The purpose of this study is the analytical prediction of nonlinear hysteretic behavior and ductility capacity of reinforced concrete bridge piers with lap splices under cyclic loading. For this purpose, a nonlinear analysis program, RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. Lap spliced bar element is developed to predict behaviors of lap spliced bar. Maximum bar stress and slip of lap spliced bar is considered.

  • PDF

A Study on the Fatigue Strength and Allowable Stress of INVAR(Fe-36% Ni) Steel Lap Joint Applied to Cargo Containment of LNG Carrier (LNG선용 INVAR(Fe-36%Ni)강 Lap 이음부의 피로강도와 허용응력에 관한 연구)

  • 한명수;한종만;한용섭
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.102-115
    • /
    • 1994
  • This paper is to evaluate the fatigue strength of lap joints of materials applied to LNG carrier cargo containment of GAZ-TRANSPORT(GT) type, which was welded by manual and automatic TIG welding process. The thicknesses of lapped members were 1.5mm/1.5mm or 1.5mm/0.7mm in Invar to Invar joint, and 1.5mm/8.0mm in Invar to stainless steel joint, respectively. These lap joints were mainly applied to the membrance fabrication of GT-LNG carrier. Fatigue tests of Invar/Inar lap joints were conducted under the stress ratio R=0 at room temperature. The effect of mean stress and cumulative fatigue damage on the allowable stress of Invar lap joint was evaluated on the basis of test results. Fatigue test was also conducted on Inver/Stainless steel lap joints welded by automatic TIG process without filler metals. The fatigue test of the joint was carried out under the same conditions as those of Invar/invar lap joints. The fatigue strength of the joint welded without filler metal was comparable to those welded with filler metal quoted from reference. The fatigue strength of Invar/stainless steel lap joint was only dependent on the lap throat thickness, and not on the welding process. Based on test results, the applicability of TIG welding process without filler metal in Invar/stainless steel lap joint was reviewed by controlling welding variables to assure the valid throat thickness of lap joints.

  • PDF

Ductility Assesment of Damaged RC Bridge Piers w with Lap-Spliced Bars

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.453-456
    • /
    • 2003
  • This research is to evaluate the seismic performance of reinforced concrete bridge piers with lap-spliced longitudinal reinforcement steels in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity. Six circular columns of 0.6m diameter and 1.5m height were made with two confinement steel ratios. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under an axial load, P=$0.1f_{ck}A_{g}$, and residual seismic performance of damaged columns was evaluated. Test results show that RC bridge piers with lap-spliced longitudinal steels behaved with minor damage even under artificial earthquakes with 0.22g PGA, but failed at low ductility subjected to the subsequent quasi-static load test. This failure was due to the debonding of the lap splice. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region showed significant improvement both in flexural strength and displacement ductility.

  • PDF

Reinforced concrete beam-column joints with lap splices under cyclic loading

  • Karabinis, Athanasios I.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.649-660
    • /
    • 2002
  • Experimental results are presented from tests conducted on reinforced concrete beam-column joints with lap splices under reversed cyclic loading simulating earthquake action. Response curves are compared for twenty-four specimens designed according to Eurocode 2. The main parameters of the investigation are, the geometry of the reinforcing bar extension, the applied axial load (normalized), the available cover over lap splice region extended as length required from Eurocode 2, as well as the shape and the volumetric percentage of the stirrups confining the lap splice zone. The results are evaluated with regards to the load intensity, the energy absorption capacity and the characteristics of the load deflection curve.

Fatigue Failure Model for the Adhesively Bonded Tubular Single Lap Joint Under Torsional Fatigue Loadings (비틀림 하중하에서의 튜브형 단면겹치기 접착조인트의 피로파괴모델에 관한 연구)

  • 이수정;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1869-1875
    • /
    • 1995
  • The adhesively bonded tubular single lap joint shows a nonlinear relationship between the applied torque and the resulting displacement under the static-torsional loading, which is induced from the nonlinear properties of the adhesive. However the torque transmission capability in the case of the dynamic-torsional loading is much less than that in the case of the static-torsional loading, the stress level of the adhesive is usually in the region of the linear stress and strain relation and the stress distributions of the joint can be obtained by the linear analysis. In this paper, a failure model for the adhesively bonded tubular single lap joint under the torsional fatigue loading was developed with respect to the adhesive thickness that was a critical factor in predicting the static torque transional-cyclic loadings was proposed.

Seismic Ductility Assessment of RC Bridge Piers With Minor Earthquake Damage By the Quasi Static Test (유사정적실험에 의한 지진이력 철근콘크리트 교각의 내진 연성도 평가)

  • 이은희;정영수;박창규;김영섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.505-511
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2,5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes of which magnitude could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=$0.1f_{ck}A_g. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility, and strain energy ductility.

  • PDF

An Experimental Evaluation of Seismic Performancef for Damaged Reinforced Concrete Bridge Piers. (손상된 철근콘크리트 교각의 내진성능평가를 위한 실험연구)

  • 박창규;이은희;이대형;정영수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.385-392
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P = 0.1 $f_{ck}$ $A_{g}$. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility.y.

  • PDF

Evaluation of Curvature Analysis at RC Bridge Piers in an aspect ratio of 2.5 (형상비 2.5 RC 교각의 곡률분석평가)

  • 박창규;정영수;이은희;김영섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.263-270
    • /
    • 2003
  • Before the implementation of the 1992 seismic design provisions in Korea, longitudinal steels of RC bridge piers were practically lap-spliced in the plastic hinge region. Experimental investigation was made to evaluate the seismic performance of RC bridge pier specimens in a flexure/shear mode. Six circular test specimens in an aspect ratio of 2.5 (600mm in diameter) were made with test parameters confinement ratio, lap splices, and retrofit FRP materials. They were damaged under a series of artificial earthquakes with 0.22g PGA, being compatible in Korean peninsula, through the pseudo-dynamic test. Probable damages were assessed by the Park and Ang damage index. Approximate 0.1 and 0.3 damage indices were obtained for RC specimens without lap splice and with lap splice, respectively. Directly after the pseudo-dynamic test, damaged test columns were laterally actuated under inelastic reversal cyclic loadings simultaneously under a constant axial load. Through curvature measurements, residual seismic performance was evaluated for test specimens. Test results show that RC pier specimens with lap-spliced appeared to fail at low ductility, but significant improvement was obtained for the ductility of these specimens if externally wrapped with FRP.

  • PDF

Fracture Mechanical Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint under Tension-Shear Load (인장-전단하중을 받는 IB형 일점 Spot 용접이음재의 파괴역학적 피로강도 평가)

  • 손일선;정원석;이휘광;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.20-27
    • /
    • 1998
  • According as the member of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. And, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic evaluation method for them. In this study, by considering nugget edge of the spot weld part of the IB-type spot welded lap joint under tension-shear load to the ligament crack. fatigue strength of various IB-type spot welded lap joints was estimated with the stress intensity factor(S.I.F.) KIII which is fracture mechanical parameter. We could find that fatigue strength evaluation of the IB-type spot welded lap joints by KIII is more effective than the maximum principal stress ($\sigma$1max) at edge of the spot weld obtained from FEM analysis.

  • PDF

Seismic Performance Evaluation of Reinforced Concrete Bridge Piers with Lap Splices (철근의 겹침이음을 고려한 철근콘크리트 교각의 내진성능평가)

  • 김태훈;박현용;김병석;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.31-38
    • /
    • 2003
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. But sudden brittle failure of lap splices may occur under inelastic cyclic loading. The purpose of this study is to analytically predict nonlinear hysteretic behavior and ductility capacity of reinforced concrete bridge piers with lap splices under cyclic loading. For this purpose, a nonlinear analysis program, RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. Lap spliced bar element is developed to predict behaviors of lap spliced bar. Maximum bar stress and slip of lap spliced bar is also considered, The proposed numerical method for seismic performance evaluation of reinforced concrete bridge piers with lap splices is verified by comparison with reliable experimental results.