• Title/Summary/Keyword: Under-developed Region

Search Result 413, Processing Time 0.026 seconds

A Study on Spray Characteristics Analysis of Free Spray of Diesel Fuel with Ultra High Pressure (극초고압영역에서의 디젤연료의 자유분무특성에 관한 연구)

  • Jeong, D.Y.;Lee, J.T.;Hong, G.B.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.16-22
    • /
    • 2002
  • The characteristics of free spray with ultra injection pressure was analyzed to clear the limit pressure of diesel engine. To obtain final goal, ultra high pressure injection equipment was developed, spray patterns were visualized under various ultra injection pressures. Spray penetration and spray width, volume and entrained air mass were increased with the increase of injection pressure. Sauter mean diameter and injection durstion wert decreased. But over 3,000bar of ultra injection pressure region the rates of increase show almost similar and finally the reversed tendencies at 4,140bar.

  • PDF

Chaotic Stirring of an Alternately-Driven-Cavity Flow (요동운동에 의한 Driven-Cavity 유동의 혼돈적 교반)

  • 서용권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.537-547
    • /
    • 1995
  • Numerical study on the chaotic stirring of viscous flow in an alternately driven cavity has been performed. Even under the Stokes-flow assumption, the inherent singularity at the corners made the problem not so easily accessible. With some special treatments to the region near the corners, the biharmonic equation was solved numerically by using the fully implicit method. The velocity field was then used in obtaining the trajectories of passive particles for studying the stirring effect. The three tools developed in the field of the nonlinear dynamics and chaos, that are the Poincare sections, the unstable manifolds, and the Lyapunov exponents, were used in analysing the stirring effect. It was shown that the unstable manifolds obtained in this study well fit the experimental results given by the previous investigators. It is predicted that the best stirring can be obtained when the aspect ratio a is near 0.8 and the dimensionless period T is in the range 4.3 - 4.7.

Effects of Foundation Stiffness on the Stability of Supercritical Driveshafts (고속 구동축의 지지부강성이 안정성에 미치는 영향)

  • Shin, Eung-Soo;Kim, Tai-Gwang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.603-607
    • /
    • 2008
  • This paper is to investigate the effects of support conditions on the whirling stability of a supercritical composite driveshaft. Two system parameters are rigorously considered: one is the bending stiffness of the support beam/bearings and the other is the rotating internal damping of the shaft. An analytic model is developed based on finite element methods and an eigenvalue analysis is employed to estimate the shaft stability under supercritical operating conditions. Results show that the internal damping causes the whirling instability at a supercritical speed, as demonstrated in other previous studies. However, the bending stiffness of the support beam is found to affect greatly the stability behaviors of a supercritical shaft and several combinations of the shaft/beam stiffness can be identified to guarantee the stable operation even in a supercritical region.

  • PDF

A Design of the Mixed $H_2 / H_\infty$ Controller Using Genetic Algorithms (유전 알고리즘을 이용한 $H_2 / H_\infty$ 혼합 제어기 설계)

  • Lee, Jong-Sung;Kang, Ki-Won;Park, Ki-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • In this paper, the genetic algorithm is used to design a mixed H₂/ H/sub ∞/ controller Two kinds of controller forms, Youla's form and the general form, are considered to design a mixed H₂/ H/sub ∞/ controller. Efficient searching methods are sought to minimize the given H₂cost function under the H∞ constraint. It is verified by an example that the developed algorithm can provide stable results in the region where unstable results are shown by the conventional gradient method.

  • PDF

A Coupling of Finite Elements and Boundary Elements for Half Plane Problems (반무한영역 문제에 대한 유한요소와 경계요소의 조합)

  • 김문겸;임윤묵
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.49-54
    • /
    • 1988
  • A procedure which may be useful in dealing with problems of half plane is considered. Boundary elements are combined with finite elements to facilitate their merits. Boundary elements for semi-infinite region are composed using the Melan's solution for half plane. Finite elements are used to model irregurarity or the nonhomogeneity of materials, which is usual in underground structures. In order to verify the procedure, a shallow tunnel under internal pressure is analysed using the finite element method, the boundary element method, and the combined method. It is shown that the developed Procedure is accurate enough compared with other method.

  • PDF

Design of Aluminium Extruded Panel for Sound Insulation (알미늄 압출재의 차음 구조 설계)

  • Seo, Tae-Gun;Kim, Seock-Hyun;Kim, Jeong-Tae;Song, Dal-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.996-999
    • /
    • 2010
  • Aluminium extruded panel is the most important element for sound insulation in a express train. However, comparing with the flat plate with the same weight, the extruded panel shows remarkably low sound transmission loss above the 1st local resonance frequency, which is determined by the dimension of the core structure. Preceding study showed the possibility of the improvement of sound insulation performance by properly designing the core dimension. By the proper core design, local resonance frequency shifts to higher frequency region without any reduction of bending or torsional strength and without any weight increase. Based upon this result, this study investigates in detail the design modification of the core structure of the aluminium extruded panel used in a express train under development, in aspect of sound insulation. Design result is compared with those of other developed models.

  • PDF

Impact of External Temperature Environment on Large FCBGA Sn-Ag-Cu Solder Interconnect Board Level Mechanical Shock Performance

  • Lee, Tae-Kyu
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.53-59
    • /
    • 2014
  • The mechanical stability of solder joints in electronic devices with Sn-Ag-Cu is a continuous issue since the material was applied to the industry. Various shock test methods were developed and standardized tests are used in the industry worldwide. Although it is applied for several years, the detailed mechanism of the shock induced failure mechanism is still under investigation. In this study, the effect of external temperature was observed on large Flip-chip BGA components. The weight and size of the large package produced a high strain region near the corner of the component and thus show full fracture at around 200G level shock input. The shock performance at elevated temperature, at $100^{\circ}C$ showed degradation based on board pad designs. The failure mode and potential failure mechanisms are discussed.

Periodic solutions of the Duffing equation

  • Tezcan, Jale;Hsiao, J. Kent
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.593-602
    • /
    • 2008
  • This paper presents a new linearization algorithm to find the periodic solutions of the Duffing equation, under harmonic loads. Since the Duffing equation models a single degree of freedom system with a cubic nonlinear term in the restoring force, finding its periodic solutions using classical harmonic balance (HB) approach requires numerical integration. The algorithm developed in this paper replaces the integrals appearing in the classical HB method with triangular matrices that are evaluated algebraically. The computational cost of using increased number of frequency components in the matrixbased linearization approach is much smaller than its integration-based counterpart. The algorithm is computationally efficient; it only takes a few iterations within the region of convergence. An example comparing the results of the linearization algorithm with the "exact" solutions from a 4th order Runge- Kutta method are presented. The accuracy and speed of the algorithm is compared to the classical HB method, and the limitations of the algorithm are discussed.

Utilization of the Bulking Agents for Environment-friendly Toilet in Rural Village (농촌마을에서 자연발효형 화장실의 통기성 매질 이용에 관한 연구)

  • Kang Bang-Hun;Cho Soon-Jae
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • The biodegradability test of bulking agents in feces composting process is conducted to increase the management efficiency for environment-friendly rural toilet developed by National Rural Resource Institute in 2001. In the case study through references and field study, ash, fallen leaves, and wood chips are commonly used in the ecological toilet. Extension officers and farmers prefer rice straw, fallen leaves, and chaff among the rural resources as a bulking agents in the aspect of getting and storage as the result of questionnaire survey. As the result of biodegradability test including the temperature change, $CO_2$ gas production, and C/N ratio change of composting pile under the condition of aerobic composting apparatus, rice straw and chaff are good bulking agents for environment-friendly rural toilet. It is recommended that easy getting materials among the above mentioned materials are used for bulking agents as the region and season in environment-friendly rural toilet.

  • PDF

Comparative Analysis of the Parabolic and Hyperbolic Heat Conduction and the Damped Wave in a Finite Medium (유한한 평판에서 포물선형 및 쌍곡선형 열전도 방정식과 파동 방정식의 비교 해석)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.14-21
    • /
    • 1999
  • The wave nature of heat conduction has been developed in situations involving extreme thermal gradients, very short times, or temperatures near absolute zero. Under the excitation of a periodic surface heating in a finite medium, the hyperbolic and parabolic heat conduction equations and the damped wave equations in heat flux are presented for comparative analysis by using the Green's function with the integral transform technique. The Kummer transformation is also utilized to accelerate the rate of convergence of these solutions. On the other hand, the temperature distributions are obtained through integration of the energy conservation law with respect to time. For hyperbolic heat conduction, the heat flux distribution does not exist throughout all the region in a finite medium within the range of very short times(${\xi}<{\eta}_l$). It is shown that due to the thermal relaxation time, the hyperbolic heat conduction equation has thermal wave characteristics as the damped wave equation has wave nature.

  • PDF